The purpose was to explore the correlation between hematological parameters and the progression of WHO grade II meningioma, and establish a clinical prognostic model based on hematological parameters and clinical prognostic factors to predict the progression-free survival (PFS) of patients.A total of 274 patients with WHO grade II meningiomas were included. Patients were randomly divided into a training cohort (192, 70%) and a test cohort (82, 30%). In the training cohort, the least absolute shrinkage and selection operator Cox regression analysis were used to screen for hematological parameters with prognostic value, and the hematological risk model (HRM) was constructed based on these parameters; univariate and multivariate Cox regression analyses were utilized to screen for clinical prognostic factors, and a clinical prognostic model was constructed based on clinical prognostic factors and HRM. The prognostic stability and accuracy of the HRM and clinical prognostic model were verified in the test cohort. Subgroup analysis was performed according to the patients' different clinical characteristics.Preoperative neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, platelet-to-lymphocyte ratio, albumin-to-globulin ratio, D-dimer, fibrinogen, and lactate dehydrogenase were associated with the PFS of patients. The areas under curve of the HRM were 0.773 (95% confidence interval [CI] 0.707-0.839) and 0.745 (95% CI 0.637-0.852) in the training cohort and test cohort, respectively. The progression risk was higher in the high-risk group than that in the low-risk group categorized by the optimal cutoff value (2.05) of hematological risk scores. The HRM, age, tumor location, tumor size, peritumoral edema, extent of resection, Ki-67 index, and postoperative radiotherapy were the prognostic factors for the progression of meningiomas. The corrected C-index of the clinical prognosis model was 0.79 in the training cohort. Clinical decision analysis showed that the clinical prognostic model could be used to obtain favorable clinical benefits. In the subgroup analysis, the HRM displayed excellent prognostic stability and general applicability in different subgroups.Preoperative hematological parameters are associated with the postoperative progression of WHO grade II meningiomas. The clinical prognosis model constructed based on hematological parameters and clinical prognostic factors has favorable predictive accuracy and clinical benefits.
The objective of this work was to investigate the effect of orally administered evodiamine on the pharmacokinetics of dapoxetine and its active metabolite desmethyl dapoxetine in rats. Twelve healthy male Sprague-Dawley rats were randomly divided into 2 groups: the control group (received oral 10 mg/kg dapoxetine alone) and the combination group (10 mg/kg dapoxetine orally co-administered with 100 mg/kg evodiamine). The plasma concentration of dapoxetine and desmethyl dapoxetine were estimated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and different pharmacokinetic parameters were calculated using the Drug and Statistics 2.0 software. Compared to the control group, the pharmacokinetic parameter of t1/2, AUC(0-∞) and Tmax of dapoxetine in combination group was significantly increased by 63.3% (p < 0.01), 44.8% (p < 0.01) and 50.4% (p < 0.01), respectively. Moreover, evodiamine had significantly decreased the pharmacokinetic parameter of t1/2 and AUC(0-∞) of desmethyl dapoxetine. This study demonstrated that evodiamine inhibits the metabolism of dapoxetine. Henceforth, the pharmacodynamic influence of this interaction should be taken into consideration while prescribing dapoxetine to the patients already taking evodiamine.
Abstract The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn 12 structure has attracted wide attention for ultra-high intrinsic magnetic properties, showing potentiality to be developed into rare-earth permanent magnets. The Ti element in alloys is crucial for phase stability and magnetic properties, and lower Ti content can increase intrinsic magnetic properties but reduce phase stability. In this study, the 1:12 single-phase melt-spun ribbons with low Ti content was successfully prepared using a rapid solidification non-equilibrium method for the Sm 1.1 Zr 0.2 Fe 9.2 Co 2.3 Ti 0.5 quinary-alloy. However, this non-equilibrium ribbon did not achieve good magnetic hardening due to the uneven microstructure and microstrain. Then, annealing was carried out to eliminate micro-strain and homogenize microstructure, therefore, remanence and coercivity were significantly improved even the precipitation of a small amount of α -Fe phase which were not conducive to coercivity. The remanence of 86.1 emu/g and coercivity of 151 kA/m was achieved when annealing at 850 °C for 45 min. After hot pressing, under the action of high temperature and pressure, a small portion of ThMn 12 phases in the magnet decompose into Sm-rich phases and α -Fe, while remanence of 4.02 kGs (1 Gs = 10 −4 T), and coercivity of 1.12 kOe (1 Oe = 79.5775 A⋅m −1 ) were still acquired. Our findings can provide reference for exploring practical permanent magnets made of 1:12 type quinary-alloys.
Abstract Tuberculosis (TB) is a zoonotic infectious disease caused by Mycobacterium tuberculosis (Mtb). Apoptosis and necrosis caused by the interaction between the host and the pathogen, as well as the host’s inflammatory response, play an important role in the pathogenesis of TB. Dual-specificity phosphatase 1 (DUSP1) plays a vital role in regulating the host immune responses. However, the role of DUSP1 in the regulation of THP-1 macrophage apoptosis induced by attenuated Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection remains unclear. In the present study, we report that infection with BCG significantly induces macrophage apoptosis and induces the production of DUSP1, TNF-α and IL-1β. DUSP1 knockdown significantly inhibited BCG-induced macrophage apoptosis and activation of MAPKs/NF-κB signaling pathway. In addition, DUSP1 knockdown suppressed BCG-induced inflammation in vivo. Taken together, this study demonstrates that DUSP1, as a regulator of MAPKs/NF-κB signaling pathway, plays a novel role in BCG-induced macrophage apoptosis and inflammatory response.
We prepared bulk nanocrystalline SmCo 6.6 Nb 0.4 sintered magnet material by spark plasma sintering technique. X-ray diffraction patterns show that the magnet exhibits a stable TbCu 7 structure. Transmission electron microscopy indicates that the microstructure of the magnet is composed of SmCo 6.6 Nb 0.4 single-phase grains with an average grain size of 30 nm. Magnetic measurement shows that under a 7 T magnetic field, the coercivity of the magnet reaches as high as 2.8 T; the saturation magnetization and the remanence are 69.6 and 51.4 emu/g, respectively. The magnet exhibits good thermal stability with the coercivity of 0.48 T at 773 K, and the coercivity temperature coefficient beta of -0.169%/K.