Proteins have been historically regarded as 'nature's robots': Molecular machines that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions for cell/system viability. However, these robots are kept in check by other protein-based machinery to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing or degrading damaged proteins. In addition, disruptions to protein homeostasis are hallmarks of many neurodegenerative diseases and diseases disproportionately affecting the elderly. Areas covered: Here we summarize age- and disease-related changes to the protein machinery responsible for preserving proteostasis and describe how both aging and disease can each exacerbate damage initiated by the other. We focus on alteration of proteostasis as an etiological or phenomenological factor in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, along with Down syndrome, ophthalmic pathologies, and cancer. Expert commentary: Understanding the mechanisms of proteostasis and their dysregulation in health and disease will represent an essential breakthrough in the treatment of many (senescence-associated) pathologies. Strides in this field are currently underway and largely attributable to the introduction of high-throughput omics technologies and their combination with novel approaches to explore structural and cross-link biochemistry.
The extracellular matrix (ECM) is readily enriched by decellularizing tissues with nondenaturing detergents to solubilize and deplete the vast majority of cellular components. This approach has been used extensively to generate ECM scaffolds for regenerative medicine technologies and in 3D cell culture to model how the ECM contributes to disease progression. A highly enriched ECM fraction can then be generated using a strong chaotrope buffer that is compatible with downstream bottom-up proteomic analysis or 3D cell culture experiments after extensive dialysis. With most tissues, an insoluble pellet remains after chaotrope extraction that is rich in structural ECM components. Previously, we showed that this understudied fraction represented approximately 80% of total fibrillar collagen from the lung and other ECM fiber components that are known to be covalently cross-linked. Here, we present a hydroxylamine digestion approach for chaotrope-insoluble ECM analysis with comparison to an established CNBr method for matrisome characterization. Because ECM characteristics vary widely among tissues, we chose five tissues that represent unique and diverse ECM abundances, composition, and biomechanical properties. Hydroxylamine digestion is compatible with downstream proteomic workflows, yields high levels of ECM peptides from the insoluble ECM fraction, and reduces analytical variability when compared to CNBr digestion. Data are available via ProteomeXchange with identifier PXD006428.
Small primary breast cancers can show surprisingly high potential for metastasis. Clinical decision-making for tumor aggressiveness, including molecular profiling, relies primarily on analysis of the cancer cells. Here we show that this analysis is insufficient — that the stromal microenvironment of the primary tumor plays a key role in tumor cell dissemination and implantation at distant sites. We previously described 2 cancer-associated fibroblasts (CAFs) that either express (CD146+) or lack (CD146–) CD146 (official symbol MCAM, alias MUC18). We now find that when mixed with human breast cancer cells, each fibroblast subtype determines the fate of cancer cells: CD146– fibroblasts promoted increased metastasis compared with CD146+ fibroblasts. Potentially novel quantitative and qualitative proteomic analyses showed that CD146+ CAFs produced an environment rich in basement membrane proteins, while CD146– CAFs exhibited increases in fibronectin 1, lysyl oxidase, and tenascin C, all overexpressed in aggressive disease. We also show clinically that CD146– CAFs predicted for likelihood of lymph node involvement even in small primary tumors (<5 cm). Clearly small tumors enriched for CD146– CAFs require aggressive treatments.
Recessive dystrophic epidermolysis bullosa (RDEB) is a multisystem inherited disorder associated with fragile skin, blister formation and poor wound healing. Patients with RDEB are at significantly increased risk of recurrent and aggressive cutaneous squamous cell carcinoma (cSCC) and because of their disease complexity, conventional therapies may not be possible. Recent advances in cancer immunotherapy have led to the successful use of immune checkpoint inhibitors (ICIs) in melanoma and other malignancies. However, the effects of ICIs in patients with cSCC and RDEB are currently unknown. A 30-year-old woman with RDEB and multiple unresectable cSCCs was found to have high tumour mutational burden and PD-L1 (programmed cell death-ligand 1) expression. She was started on an ICI, which yielded disease control and was well tolerated. Furthermore, her RDEB wounds improved. This case demonstrates successful use of immunotherapy for advanced cSCC in RDEB, a disease that is often challenging to treat with local therapies.
Bone samples from several vertebrates were collected from the Ziegler Reservoir fossil site, in Snowmass Village, Colorado, and processed for proteomics analysis. The specimens come from Pleistocene megafauna Bison latifrons, dating back ∼ 120,000 years. Proteomics analysis using a simplified sample preparation procedure and tandem mass spectrometry (MS/MS) was applied to obtain protein identifications. Several bioinformatics resources were used to obtain peptide identifications based on sequence homology to extant species with annotated genomes. With the exception of soil sample controls, all samples resulted in confident peptide identifications that mapped to type I collagen. In addition, we analyzed a specimen from the extinct B. latifrons that yielded peptide identifications mapping to over 33 bovine proteins. Our analysis resulted in extensive fibrillar collagen sequence coverage, including the identification of posttranslational modifications. Hydroxylysine glucosylgalactosylation, a modification thought to be involved in collagen fiber formation and bone mineralization, was identified for the first time in an ancient protein dataset. Meta-analysis of data from other studies indicates that this modification may be common in well-preserved prehistoric samples. Additional peptide sequences from extracellular matrix (ECM) and non-ECM proteins have also been identified for the first time in ancient tissue samples. These data provide a framework for analyzing ancient protein signatures in well-preserved fossil specimens, while also contributing novel insights into the molecular basis of organic matter preservation. As such, this analysis has unearthed common posttranslational modifications of collagen that may assist in its preservation over time. The data are available via ProteomeXchange with identifier PXD001827.
Increasing evidence demonstrates an important role for the extracellular matrix (ECM) in breast cancer progression. Collagen type I, a core constituent of the fibrous ECM, undergoes a significant set of changes that accompany tumor progression, termed Tumor Associated Collagen Signatures (TACS). Late stages of this progression are characterized by the presence of bundled, straight collagen (TACS-2) that become oriented perpendicular to the tumor-stromal boundary (TACS-3). Importantly, the presence of TACS-3 collagen is an independent predictor of poor patient outcome. At present, it remains unclear whether reorganization of the collagen matrix is the consequence of mechanical or compositional tissue remodeling. Here, we identify compositional changes in ECM correlating to collagen fiber reorganization from nineteen normal and invasive ductal carcinoma (IDC) patient biopsies using matrisome-targeted proteomics. Twenty-seven ECM proteins were significantly altered in IDC samples compared to normal tissue. Further, a set of nineteen matrisome proteins positively correlate and five proteins inversely correlate with IDC tissues containing straightened collagen fibers. Tenascin-C and thrombospondin-2 significantly co-localized with aligned collagen fibers in IDC tissues. This study highlights the compositional change in matrisome proteins accompanying collagen re-organization during breast cancer progression and provides candidate proteins for investigation into cellular and structural influences on collagen alignment.
We launched a dedicated process to identify invisible disabilities after stroke. Hypothesis. >50% of acute stroke patients have cognitive deficits, or depression.
The pathobiology of tau is of great importance for understanding the mechanisms of neurodegeneration in aging and age-associated disorders such as Alzheimer disease (AD) and frontotemporal dementias. It is critical to identify neuronal populations and brain regions that are vulnerable or resistant to tau pathological changes. Pick disease (PiD) is a three-repeat (3R) tauopathy that belongs to the group of frontotemporal lobar degenerations. The neuropathologic changes of PiD are characterized by globular tau-positive neuronal intracytoplasmic inclusions, called Pick bodies, in the granule cells of the dentate gyrus and frontal and temporal neocortices, and ballooned neurons, named Pick neurons, in the neocortex. In the present study, we examined 13 autopsy-confirmed cases of PiD. Using immunohistochemistry for phospho-tau (AT8) and 3R tau isoform, all PiD cases demonstrated extensive lesions involving the hippocampus and neocortex. However, the lateral geniculate body (LGB) is spared of significant tau lesions in contrast to the neighboring hippocampus and other thalamic nuclei. Only 1 PiD case (7.7%) had tau-positive neurons, and 4 cases had tau-positive neurites (31%) in the LGB. By contrast, the LGB does consistently harbor tau lesions in other tauopathies including progressive supranuclear palsy, corticobasal degeneration, and AD.
Promising single-agent activity from sotorasib and adagrasib in KRASG12C-mutant tumors has provided clinical evidence of effective KRAS signaling inhibition. However, comprehensive analysis of KRAS-variant prevalence, genomic alterations, and the relationship between KRAS and immuno-oncology biomarkers is lacking.Retrospective analysis of deidentified records from 79,004 patients with various cancers who underwent next-generation sequencing was performed. Fisher's exact test evaluated the association between cancer subtypes and KRAS variants. Logistic regression assessed KRASG12C comutations with other oncogenes and the association between KRAS variants and immuno-oncology biomarkers.Of the 79,004 samples assessed, 13,758 (17.4%) harbored KRAS mutations, with 1,632 (11.9%) harboring KRASG12C and 12,126 (88.1%) harboring other KRAS variants (KRASnon-G12C). Compared with KRASnon-G12C across all tumor subtypes, KRASG12C was more prevalent in females (56% v 51%, false discovery rate-adjusted P value [FDR-P] = .0006), current or prior smokers (85% v 56%, FDR-P < .0001), and patients age > 60 years (73% v 63%, FDR-P ≤ .0001). The most frequent KRAS variants across all subtypes were G12D (29.5%), G12V (23.0%), G12C (11.9%), G13D (6.5%), and G12R (6.2%). KRASG12C was most prevalent in patients with non-small-cell lung cancer (9%), appendiceal (3.9%), colorectal (3.2%), tumor of unknown origin (1.6%), small bowel (1.43%), and pancreatic (1.3%) cancers. Compared with KRASnon-G12C-mutated, KRASG12C-mutated tumors were significantly associated with tumor mutational burden-high status (17.9% v 8.4%, odds ratio [OR] = 2.38; FDR-P < .0001). KRASG12C-mutated tumors exhibited a distinct comutation profile from KRASnon-G12C-mutated tumors, including higher comutations of STK11 (20.59% v 5.95%, OR = 4.10; FDR-P < .01) and KEAP1 (15.38% v 4.61%, OR = 3.76; FDR-P < .01).This study presents the first large-scale, pan-cancer genomic characterization of KRASG12C. The KRASG12C mutation was more prevalent in females and older patients and appeared to be associated with smoking status. KRASG12C tumors exhibited a distinct comutation profile and were associated with tumor mutational burden-high status.