<div>Abstract<p>Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-seq), to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer-predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors), and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor–normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers.</p>Significance:<p>Pediatric cancers are driven by diverse genomic lesions, and sequencing has proven useful in evaluating high-risk and relapsed/refractory cases. We show that combined WGS, WES, and RNA-seq of tumor and paired normal tissues enables identification and characterization of genetic drivers across the full spectrum of pediatric cancers.</p><p><i><a href="https://aacrjournals.org/cancerdiscovery/article/doi/10.1158/2159-8290.CD-11-12-ITI" target="_blank">This article is highlighted in the In This Issue feature, p. 2945</a></i></p></div>
<p>Supplementary Figure 2. Molecular features of tumors harboring pathogenic aoCPG variants showing the full range of additional somatic second hits.</p>
<div>AbstractPurpose:<p>Clinical genomic sequencing of pediatric tumors is increasingly uncovering pathogenic variants in adult-onset cancer predisposition genes (aoCPG). Nevertheless, it remains poorly understood how often aoCPG variants are of germline origin and whether they influence tumor molecular profiles and/or clinical care. In this study, we examined the prevalence, spectrum, and impacts of aoCPG variants on tumor genomic features and patient management at our institution.</p>Experimental Design:<p>This is a retrospective study of 1,018 children with cancer who underwent clinical genomic sequencing of their tumors. Tumor genomic data were queried for pathogenic variants affecting 24 preselected aoCPGs. Available tumor whole-genome sequencing (WGS) data were evaluated for second hit mutations, loss of heterozygosity (LOH), DNA mutational signatures, and homologous recombination deficiency (HRD). Patients whose tumors harbored one or more pathogenic aoCPG variants underwent subsequent germline testing based on hereditary cancer evaluation and family or provider preference.</p>Results:<p>Thirty-three patients (3%) had tumors harboring pathogenic variants affecting one or more aoCPGs. Among 21 tumors with sufficient WGS sequencing data, six (29%) harbored a second hit or LOH affecting the remaining aoCPG allele with four of these six tumors (67%) also exhibiting a DNA mutational signature consistent with the altered aoCPG. Two additional tumors demonstrated HRD, of uncertain relation to the identified aoCPG variant. Twenty-one of 26 patients (81%) completing germline testing were positive for the aoCPG variant in the germline. All germline-positive patients were counseled regarding future cancer risks, surveillance, and risk-reducing measures. No patients had immediate cancer therapy changed due to aoCPG data.</p>Conclusions:<p>AoCPG variants are rare in pediatric tumors; however, many originate in the germline. Almost one third of tumor aoCPG variants examined exhibited a second hit and/or conferred an abnormal DNA mutational profile suggesting a role in tumor formation. aoCPG information aids in cancer risk prediction but is not commonly used to alter the treatment of pediatric cancers.</p></div>