Abstract Background: Although surgery is the definitive curative treatment for biliary tract cancer (BTC), outcomes after surgery alone have not been satisfactory. Adjuvant therapy with S-1 may improve survival in patients with BTC. This study examined the safety and efficacy of 1 year adjuvant S-1 therapy for BTC in a multi-institutional trial. Methods: The inclusion criteria were as follows: histologically proven BTC, Eastern Cooperative Oncology Group (ECOG) performance status 0 or 1, R0 or R1 surgery performed, cancer classified as Stage IB to III. Within 10 weeks post-surgery, a 42-day cycle of treatment with S-1 (80 mg/m 2 /day orally twice daily on days 1–28 of each cycle) was initiated and continued up to 1 year post surgery. The primary endpoint was adjuvant therapy completion rate. The secondary endpoints were toxicities, disease-free survival (DFS), and overall survival (OS). Results: Forty-six patients met the inclusion criteria of whom 19 had extrahepatic cholangiocarcinoma, 10 had gallbladder carcinoma, 9 had ampullary carcinoma, and 8 had intrahepatic cholangiocarcinoma. Overall, 25 patients completed adjuvant chemotherapy, with a 54.3% completion rate while the completion rate without recurrence during the 1 year administration was 62.5%. Seven patients (15%) experienced adverse events (grade 3/4). The median number of courses administered was 7.5. Thirteen patients needed dose reduction or temporary therapy withdrawal. OS and DFS rates at 1/2 years were 91.2/80.0% and 84.3/77.2%, respectively. Among patients who were administered more than 3 courses of S-1, only one patient discontinued because of adverse events. Conclusions : One-year administration of adjuvant S-1 therapy for resected BTC was feasible and may be a promising treatment for those with resected BTC. Now, a randomized trial to determine the optimal duration of S-1 is ongoing. Trial registration : UMIN-CTR, UMIN000009029. Registered 5 October 2012-Retrospectively registered, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000009347)
K-ras point mutations have been observed in approximately 90% of pancreatic carcinomas. We genetically analyzed cases of pancreatic regional lymph nodal and plexus micrometastases in invasive ductal carcinoma of the pancreas who were node negative or had metastases limited histopathologically to pancreaticoduodenal lymph nodes. These cases underwent curative resection in our institute. The utility of genetic analysis was compared with that of histopathological study, in terms of postoperative clinical outcome, as a predictive factor for recurrent pancreatic carcinoma. Samples for DNA extraction were obtained from formalin-fixed, paraffin-embedded specimens. A 0.5-microg quantity of DNA was subjected to enriched PCR and nonradioisotopic single-strand conformation polymorphism analysis. K-ras codon 12 mutations were detected in 83% (10 of 12) of invasive ductal carcinomas. In four cases, the genetic analysis of regional lymph nodal metastases and pancreatic plexus invasion of the pancreatic carcinoma yielded results concordant with those of histopathological analysis. In six cases, however, the metastases detected by genetic analysis were more advanced than was indicated by the histopathological examination. The survival rate of cases with metastases beyond the pancreaticoduodenal lymph nodes was significantly lower than that of cases with metastases limited to the pancreaticoduodenal lymph nodes or with no nodal involvement based on genetic analysis (P < 0.05). Intraoperative analysis of point mutations at K-ras codon 12 in the regional lymph nodes and the pancreatic plexus by enriched PCR/nonradioisotopic single-strand conformation polymorphism analysis is a highly accurate predictive factor for recurrent pancreatic carcinoma.
Abstract Background: Although surgery is the definitive curative treatment for biliary tract cancer (BTC), outcomes after surgery alone have not been satisfactory. Adjuvant therapy with S-1 may improve survival in patients with BTC. This study examined the safety and efficacy of 1 year adjuvant S-1 therapy for BTC in a multi-institutional trial. Methods: The inclusion criteria were as follows: histologically proven BTC, ECOG performance status 0 or 1, R0 or R1 surgery performed, cancer classified as Stage IB to III. Within 10 weeks post-surgery, a 42-day cycle of treatment with S-1 (80 mg/m 2 /day orally twice daily on days 1–28 of each cycle) was initiated and continued up to 1 year post surgery. The primary endpoint was adjuvant therapy completion rate. The secondary endpoints were toxicities, disease-free survival (DFS) and overall survival (OS). Results: Overall, 46 patients met the inclusion criteria of whom 19 had extrahepatic cholangiocarcinoma, 10 had gallbladder carcinoma, 9 had ampullary carcinoma, and 8 had intrahepatic cholangiocarcinoma. Overall, 25 patients completed adjuvant chemotherapy, with a 54.3% completion rate while the completion rate without recurrence during the 1 year administration was 62.5%. Seven patients (15%) experienced adverse events (grade 3/4). The median number of courses administered was 7.5. Thirteen patients needed dose reduction or temporal therapy withdrawal. OS and DFS rates at 1/2 years were 91.2/80.0% and 84.3/77.2%, respectively. Among patients who were administered S-1 more than 3 courses, only one case discontinued due to adverse events. Conclusions : One-year administration of adjuvant S-1 therapy for resected BTC was feasible and may be a promising treatment for those with resected BTC. Now, a randomized trial to determine the optimal duration of S-1 is ongoing. Trial registration : UMIN-CTR, UMIN000009029. Registered 5 October 2012-Retrospectively registered, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000009347)
Epidemiologic and animal studies have shown that exposure to particulate matter air pollution (PM) is a risk factor for the development of atherosclerosis. Whether PM-induced lung and systemic inflammation is involved in this process is not clear. We hypothesized that PM exposure causes lung and systemic inflammation, which in turn leads to vascular endothelial dysfunction, a key step in the initiation and progression of atherosclerosis. New Zealand White rabbits were exposed for 5 days (acute, total dose 8 mg) and 4 wk (chronic, total dose 16 mg) to either PM smaller than 10 mum (PM(10)) or saline intratracheally. Lung inflammation was quantified by morphometry; systemic inflammation was assessed by white blood cell and platelet counts and serum interleukin (IL)-6, nitric oxide, and endothelin levels. Endothelial dysfunction was assessed by vascular response to acetylcholine (ACh) and sodium nitroprusside (SNP). PM(10) exposure increased lung macrophages (P<0.02), macrophages containing particles (P<0.001), and activated macrophages (P<0.006). PM(10) increased serum IL-6 levels in the first 2 wk of exposure (P<0.05) but not in weeks 3 or 4. PM(10) exposure reduced ACh-related relaxation of the carotid artery with both acute and chronic exposure, with no effect on SNP-induced vasodilatation. Serum IL-6 levels correlated with macrophages containing particles (P=0.043) and ACh-induced vasodilatation (P=0.014 at week 1, P=0.021 at week 2). Exposure to PM(10) caused lung and systemic inflammation that were both associated with vascular endothelial dysfunction. This suggests that PM-induced lung and systemic inflammatory responses contribute to the adverse vascular events associated with exposure to air pollution.