Celiac disease (CD), the most common chronic enteropathy worldwide, is triggered and sustained by a dysregulated immune response to dietary gluten in genetically susceptible individuals. Up to date either the role of environmental factors and the pathways leading to mucosal damage have been only partially unraveled. Therefore, we seized the unique opportunity to study a naturally-occurring experimental model of a family composed of both parents suffering from CD (one on a gluten-free diet) and two non-celiac daughters. The control group consisted in four unrelated cases, two celiac and two non-celiac subjects, all matching with family members for both disease status and genetic susceptibility. In this privileged setting, we sought to investigate gene expression in peripheral blood mononuclear cells (PBMCs), a population known to mirror the immune response state within the gut. To this purpose, PBMCs were obtained from the four biopsied-proven CD patients and the four non-celiac cases. Each group included two family members and two unrelated control subjects. After RNA purification and cDNA synthesis, each sample underwent a microarray screen on a whole-transcriptome scale, and the hybridization results were visualized by hierarchical clustering. Differentially expressed genes (DEG) were partitioned into clusters displaying comparable regulations among samples. These clusters were subjected to both functional and pathway analysis by using the Kyoto Encyclopedia of Genes and Genomes. Interestingly, on a global gene expression level, the family members clustered together, regardless of their disease status. A relevant fraction of DEG belonged to a limited number of pathways, and could be differentiated based on disease status: active CD vs. treated CD and CD vs. controls. These pathways were mainly involved in immune function regulation, cell-cell junctions, protein targeting and degradation, exosome trafficking, and signal transduction. Worth of noting, a small group of genes mapping on the male-specific region of the Y chromosome, and previously linked to cardiovascular risk, was found to be strongly upregulated in the active CD case belonging to the family, who suddenly died of a heart attack. Our results provide novel information on CD pathogenesis and may be useful in identifying new therapeutic tools and risk factors associated with this condition.
Anemia due to hematinic deficiencies is common in patients with untreated celiac disease. Although celiac disease is a chronic condition characterized by an intense inflammatory response of the intestinal mucosa, scant data are available about the prevalence of anemia of chronic disease in celiac disease.One hundred and fifty-two patients with celiac disease at presentation were studied. Anemia was investigated by determining complete blood counts, body iron status, serum levels of the soluble transferrin receptor, erythropoietin, prohepcidin and interferon-gamma. Genotyping for HFE mutations associated with hereditary hemochromatosis was performed. Fifty-three anemic patients were re-evaluated for hematologic response after 1 year on a gluten-free diet.At the time of diagnosis of celiac disease the prevalence of anemia was 34%. Fifty-three out of 65 anemic patients had either iron and/or vitamin deficiency (folate, vitamin B(12)). Hereditary hemochromatosis mutations did not affect the prevalence of anemia. In 11 cases iron status parameters were indicative of anemia of chronic disease, sometimes in association with iron deficiency (6 patients). Patients with anemia of chronic disease had low levels of erythropoietin for the degree of anemia and increased serum interferon-gamma. In most cases anemia improved following a gluten-free diet, response rates being similar in anemia of chronic disease and in anemia due to hematinic deficiencies.Our study shows that, in addition to iron and vitamin deficiencies, anemia of chronic disease has a significant role in some patients with celiac disease. Suppression of intestinal inflammatory changes as a result of a gluten-free diet improves anemia by correcting iron and vitamin malabsorption as well as mechanisms contributing to anemia of chronic disease.
Type 1 autoimmune pancreatitis (AIP) is an IgG4-related disease whose diagnosis is challenging. The aim of this study was to investigate the diagnostic value of circulating total and IgG4