Poplars have a strong response to light, and shade is one of the main environmental factors that limits the growth and development of poplars. Exploring the response mechanism of the developing xylem of poplar under shady conditions is of great reference significance for improving wood yields. In this study, three excellent hybrids of poplar (Populus euramericana ‘Zhonglin46’ (Pe), Populus deltoides ‘27-17’ (Pd), Populus × ‘Wq156’ (Pw) were studied under shady conditions. Based on the phenotypic data and developing a xylem transcriptome analysis, the molecular mechanism of poplars’ response to shade was preliminarily revealed, and the core regulatory genes responding to shade were identified by a weighted co-expression network analysis (WGCNA). The results showed that Pw growth was significantly affected by shade, while Pe growth was slightly affected by shade. An enrichment analysis of 13,675 differentially expressed genes (DEGs) found that shade affected the expression of genes related to the glutathione metabolic pathway. The WGCNA analysis identified two modules (“Brown” and “Purple”) related to the shade response and discovered seven hub genes. These hub genes were related to xylem development, vascular cambium division, stomatal development, and phytochrome A signal transduction. These results provide important basic information for gaining insight into the molecular response to shade in different poplar hybrids.
Abstract Background Forest trees such as poplar, shrub willow, et al. are essential natural resources for sustainable and renewable energy production, and their wood can reduce dependence on fossil fuels and reduce environmental pollution. However, the productivity of forest trees is often limited by the availability of nitrogen (N), improving nitrogen use efficiency (NUE) is an important way to address it. Currently, NUE genetic resources are scarce in forest tree research, and more genetic resources are urgently needed. Results Here, we performed genome-wide association studies (GWAS) using the mixed linear model (MLM) to identify genetic loci regulating growth traits in Populus cathayana at two N levels, and attempted to enhance the signal strength of single nucleotide polymorphism (SNP) detection by performing genome selection (GS) assistance GWAS. The results of the two GWAS analyses identified 55 and 40 SNPs that were respectively associated with plant height (PH) and ground diameter (GD), and 92 and 69 candidate genes, including 30 overlapping genes. The prediction accuracy of the GS model (rrBLUP) for phenotype exceeds 0.9. Transcriptome analysis of 13 genotypes under two N levels showed that genes related to carbon and N metabolism, amino acid metabolism, energy metabolism, and signal transduction were differentially expressed in the xylem of P. cathayana under N treatment. Furthermore, we observed strong regional patterns in gene expression levels of P. cathayana , with significant differences between different regions. Among them, P. cathayana in Longquan region exhibited the highest response to N. Finally, through weighted gene co-expression network analysis (WGCNA), we identified a module closely related to the N metabolic process and eight hub genes. Conclusions Integrating the GWAS, RNA-seq and WGCNA data, we ultimately identified four key regulatory genes (PtrNAC123, PtrNAC025, Potri.002G233100, and Potri.006G236200) involved in the wood formation process, and they may affect P. cathayana growth and wood formation by regulating nitrogen metabolism. This study will provide strong evidence for N regulation mechanisms, and reliable genetic resources for growth and NUE genetic improvement in poplar.
Ubiquitination controls almost all cellular processes. The dysregulation of ubiquitination signals is closely associated with the initiation and progression of multiple diseases. However, there is little comprehensive research on the interaction and potential function of ubiquitination regulators (UBRs) in spermatogenesis and cancer.We systematically characterized the mRNA and protein expression of UBRs across tissues and further evaluated their roles in testicular development and spermatogenesis. Subsequently, we explored the genetic alterations, expression perturbations, cancer hallmark-related pathways, and clinical relevance of UBRs in pan-cancer.This work reveals heterogeneity in the expression patterns of UBRs across tissues, and the expression pattern in testis is the most distinct. UBRs are dynamically expressed during testis development, which are critical for normal spermatogenesis. Furthermore, UBRs have widespread genetic alterations and expression perturbations in pan-cancer. The expression of 79 UBRs was identified to be closely correlated with the activity of 32 cancer hallmark-related pathways, and ten hub genes were screened for further clinical relevance analysis by a network-based method. More than 90% of UBRs can affect the survival of cancer patients, and hub genes have an excellent prognostic classification for specific cancer types.Our study provides a comprehensive analysis of UBRs in spermatogenesis and pan-cancer, which can build a foundation for understanding male infertility and developing cancer drugs in the aspect of ubiquitination.
Abstract Background Poplar trees provide a large amount of wood material, but many parts of the world are arid or semi-arid areas because of insufficient annual precipitation, which seriously affects the growth of poplar trees. Populus simonii ‘Tongliao1’ shows strong tolerance to stress environments, and Populus deltoides ‘Danhong’ shows a stronger growth rate in a suitable environment. To identify drought tolerance-related QTLs and genes, an F 1 population derived from the cross between the ‘Danhong’ and ‘Tongliao 1’ Populus was assessed under drought stress. Results We measured drought-related traits such as the relative height growth, relative diameter growth, leaf senescence number, specific leaf area, and leaf relative water content in the population under control and drought environments. The results showed that drought stress reduced the plant height relative growth, ground diameter relative growth, specific leaf area and leaf relative water content and increased the number of leaf drops. A total of 208 QTLs were identified by QTL mapping analysis, and they consisted of 92, 63 and 53 QTLs under control, drought stress treatment and drought index conditions, respectively. A molecular identification marker for drought tolerance, np2841, which was associated with a QTL (qDLRWC-LG10-1) for relative leaf water content, was initially developed. We mined 187 candidate genes for QTL regions of five traits under a drought environment. The reference genome annotation for Populus trichocarpa and a homologous gene analysis of Arabidopsis thaliana identified two candidate genes, Potri.003G171300 and Potri.012G123900 , with significant functions in response to drought stress. We identified five key regulatory genes ( Potri.006G273500 , Potri.007G111500 , Potri.007G111600 , Potri.007G111700 , and Potri.007G111800 ) related to drought tolerance through the poplar coexpression network. Conclusion In this study, our results indicate that the QTLs can effectively enhance the drought tolerance of poplar. It is a step closer towards unravelling the genetic basis of poplar drought tolerance-related traits, and to providing validated candidate genes and molecular markers for future genetic improvement.
γ-Aminobutyric acid (GABA) is an important neurotransmitter in mammals whose receptor is reported to be regulated by flavonoids. In plants, it is considered to be at the intersection of carbon and nitrogen metabolism, but its relationship with flavonoid metabolism remains unclear. Our recent RNA-seq analysis showed that expression of flavonoid biosynthetic genes was influenced in poplar by the blockage of α-ketoglutarate dehydrogenase (α-KGDH) activity and the application of GABA under NaCl stress, accompanied by the changes in GABA shunt activity. Here, we further found that the flavonoid accumulation was significantly affected by blocking the activities of α-KGDH and GABA transaminase as well as applying exogenous GABA, coupled with the changes of endogenous GABA contents. Key genes involved in the flavonoid biosynthetic pathway were also significantly influenced, including two PALs, 4CL, and two CHSs. Our results suggest that the GABA shunt is closely associated with the metabolism of flavonoids, which would benefit future understanding of GABA's roles in carbon allocation by regulating the pathway of flavonoid biosynthesis under normal or stress conditions.
The adventitious root (AR) is the basis for successful propagation by plant cuttings and tissue culture and is essential for maintaining the positive traits of a variety. Members of the amino acid/auxin permease (AAAP) gene family play indispensable roles in various plant metabolisms and have few studies on root growth and amino acid transport. In this study, with a systematic bioinformatics analysis of the Populus AAAP family, 83 PtrAAAPs were identified from Populus trichocarpa and grouped into 8 subfamilies. Subsequently, chromosomal distribution, genetic structure, cis-elements analysis, and expression pattern analysis of the AAAP family were performed and the potential gene AAAP21 regulating root development was screened by combining the results of RNA-Seq and QTL mapping. PsAAAP21 was proven as promoting root development by enhancing AR formation. Differentially expressed genes (DEGs) from RNA-seq results of overexpressing lines were enriched to multiple amino acid-related pathways, and the amino acid treatment to transgenic lines indicated that PsAAAP21 regulated amino acid transport, including tyrosine, methionine, and arginine. Analysis of the AAAP gene family provided a theoretical basis for uncovering the functions of AAAP genes. The identification of PsAAAP21 on root promotion and amino acid transport in Populus will help with breeding new woody plant species with strong rooting ability.