The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
IRS-1 is an insulin receptor substrate that undergoes tyrosine phosphorylation and associates with the phosphatidylinositol (PtdIns) 3'-kinase immediately after insulin stimulation. Recombinant IRS-1 protein was tyrosine phosphorylated by the insulin receptor in vitro and associated with the PtdIns 3'-kinase from lysates of quiescent 3T3 fibroblasts. Bacterial fusion proteins containing the src homology 2 domains (SH2 domains) of the 85-kDa subunit (p85) of the PtdIns 3'-kinase bound quantitatively to tyrosine phosphorylated, but not unphosphorylated, IRS-1, and this association was blocked by phosphotyrosine-containing synthetic peptides. Moreover, the phosphorylated peptides and the SH2 domains each inhibited binding of PtdIns 3'-kinase to IRS-1. Phosphorylated IRS-1 activated PtdIns 3'-kinase in anti-p85 immunoprecipitates in vitro, and this activation was blocked by SH2 domain fusion proteins. These data suggest that the interaction between PtdIns 3'-kinase and IRS-1 is mediated by tyrosine phosphorylated motifs on IRS-1 and the SH2 domains of p85, and IRS-1 activates PtdIns 3'-kinase by binding to the SH2 domains of p85. Thus, IRS-1 likely serves to transmit the insulin signal by binding and regulating intracellular enzymes containing SH2 domains.
Middle T antigen (MT) is the principal oncoprotein of murine polyomavirus. Experiments on the acute immediate effects of MT expression on cellular RNA levels showed that expression of osteopontin (OPN) was strongly induced by MT expression. Osteopontin is a protein known to be associated with cancer. It has a role in tumor progression and invasion. Protein analysis confirmed that MT induced the secretion of OPN into the extracellular medium. Expression of antisense OPN RNA had no effect on the growth of MT-transformed cells. However, it had a strong effect on the ability of MT transformants to migrate or to fill a wound. Analysis of MT mutants implicated both the SHC and phosphatidylinositol 3-kinase pathways in OPN induction. Reporter assays showed that MT regulated the OPN promoter through two of its PEA3 (polyoma enhancer activator 3) sites. As critical PEA3 sites are also part of the polyomavirus enhancer, the same signaling important for viral replication also contributes to virally induced metastatic potential.
Here, we show how targeting protein phosphatase 2A (PP2A), a key regulator of cellular protein phosphorylation, can either induce or prevent apoptosis depending on what other signals the cell is receiving. The oncoprotein polyoma small T interacts with PP2A to regulate survival. In the presence of growth factors, small T induces apoptosis. Akt activity, which usually promotes survival, is required for this death response, because inhibitors of Akt or PI3 kinase protect cells from death. The activation of Akt under these conditions is partial, characterized by T308 phosphorylation but not S473 phosphorylation. In the absence of growth factors, small T protects from cell death. Here, small T uses PP2A to promote phosphorylation of Akt on both T308 and S473. This effect results in a different pattern of phosphorylation of Akt substrates and shifts Akt from a proapoptotic (presence of growth factors) to an antiapoptotic mode (absence of growth factors). An intriguing possibility is that Akt phosphorylation could be therapeutically disregulated to decrease the survival of cancer cells.
Understanding the specificity of Src homology 2 (SH2) domains is important because of their critical role in cell signaling. Previous genetic analysis has characterized mutants of the N-terminal src homology 2 (SH2) domain of the p85 subunit of phosphoinositide 3-kinase (PI3K). The P395S mutant exhibits a specificity for phosphopeptide binding different from that of the wild-type SH2. The P395S mutant has an increased affinity for the platelet-derived growth factor receptor (PDGFr) compared to polyomavirus middle T antigen (MT). Solution structures of the P395S mutant of the p85 N-SH2 alone and complexed to a PDGFr phosphopeptide were determined to explain the change in specificity. Chemical shift perturbations caused by different peptides were compared for mutant and wild-type structures. The results show that the single P395S mutation has broad effects on the structure. Furthermore, they provide a rationale for the observed changes in binding preference.
Polyoma large T antigen (LT) is the only viral gene product required for viral DNA replication. LT can be divided into two domains, one N-terminal (NT) spanning residues 1-260 and one C-terminal (CT) comprising approximately residues 264-785. NT is known to immortalize primary cells in a manner dependent on binding of pRB/p107. Here a CT construct comprising residues 264-785 was shown to have independent function in DNA replication. CT is entirely sufficient for driving viral DNA replication in vivo in growing mouse cells at a level approaching that of full-length LT. In contrast, CT is strikingly deficient for replication in serum-starved cells. However, this deficiency can be complemented by coexpression of NT. BrdUrd incorporation in transfected, starved cells showed that NT was sufficient for inducing S phase, suggesting a mechanism for complementation. By contrast, CT was unable to induce S phase when tested in the same assay. NT also promotes phosphorylation of sites in CT that are likely to be important for replication. Other DNA tumor virus gene products such as adenovirus E1A 12S and human papillomavirus 16 E7 could also complement CT for replication. Although NT, E1A 12S, and E7 all bind the retinoblastoma gene product (pRB) and p107, genetic analysis demonstrates an additional function, independent of that binding, is responsible for complementation.
Middle T antigen of polyoma virus is associated principally with the plasma membrane. Comparison of the trypsin sensitivity of middle T in intact cells and "inside out" membrane preparations showed that middle T is oriented towards the inside of the cell. This was confirmed by labeling of middle T in permeabilized cells, but not in intact cells, using [gamma-32P]ATP. Middle T molecules active in the in vitro kinase reaction could be differentiated from the bulk (metabolically labeled) middle T based on resistance to trypsin treatment. The active fraction also behaved differently from the bulk when cell frameworks were prepared with Triton-containing buffers; whereas the bulk middle T was evenly distributed in the soluble and cell framework fractions, the kinase-active forms were largely associated with the framework. Middle T molecules labeled in vivo with 32PO4 were found largely in the framework fraction, like the molecules that show kinase activity in vitro. Experiments with ATP affinity reagents 8-azido-ATP and 2,3-dialdehyde ATP have failed to label the middle T antigen. However, 2,3-dialdehyde ATP could be used to inhibit the kinase reaction. This raises the question of whether middle T antigen possesses intrinsic kinase activity or, rather, associates with a cellular tyrosine kinase.
ABSTRACT Many of the small DNA tumor viruses encode transforming proteins that function by targeting critical cellular pathways involved in cell proliferation and survival. In this study, we have examined whether some of the functions of the polyomavirus small T antigens (ST) are shared by the E6 and E7 oncoproteins of two oncogenic papillomaviruses. Using three different assays, we have found that E7 can provide some simian virus 40 (SV40) or murine polyomavirus (PyV) ST functions. Both human papillomavirus 16 (HPV16) and bovine papillomavirus (BPV1) E7 proteins are capable of partially substituting for SV40 ST in a transformation assay that also includes SV40 large T antigen, the catalytic subunit of cellular telomerase, and oncogenic Ras. Like SV40 ST, HPV16 E7 has the ability to override a quiescence block induced by mitogen deprivation. Like PyV ST, it also has the ability to inhibit myoblast differentiation. At least two of these activities are dependent upon the interaction of HPV16 E7 with retinoblastoma protein family members. For small T antigens, interaction with PP2A is needed for each of these functions. Even though there is no strong evidence that E6 or E7 share the ability of small T to interact with PP2A, E7 provides these functions related to cellular transformation. IMPORTANCE DNA tumor viruses have provided major insights into how cancers develop. Some viruses, like the human papillomaviruses, can cause cancer directly. Both the papillomaviruses and the polyomaviruses have served as tools for understanding pathways that are often perturbed in cancer. Here, we have compared the functions of transforming proteins from several DNA tumor viruses, including two papillomaviruses and two polyomaviruses. We tested the papillomavirus E6 and E7 oncoproteins in three functional assays and found that E7 can provide some or all of the functions of the SV40 small T antigen, another well-characterized oncoprotein, in two of these assays. In a third assay, papillomavirus E7 has the same effect as the murine polyomavirus small T protein. In summary, we report several new functions for the papillomavirus E7 proteins, which will contribute new insights into the roles of viruses in cancer and the cellular pathways they perturb in carcinogenesis.