Methods of optical dynamic nuclear polarization (DNP) open the door to the replenishable hyperpolarization of nuclear spins, boosting their NMR/MRI signature by orders of magnitude. Nanodiamond powder rich in negatively charged Nitrogen Vacancy (NV) defect centers has recently emerged as one such promising platform, wherein 13C nuclei can be hyperpolarized through the optically pumped defects completely at room temperature and at low magnetic fields. Given the compelling possibility of relaying this 13C polarization to nuclei in external liquids, there is an urgent need for the engineered production of highly hyperpolarizable diamond particles. In this paper, we report on a systematic study of various material dimensions affecting optical 13C hyperpolarization in diamond particles -- especially electron irradiation and annealing conditions that drive NV center formation. We discover surprisingly that diamond annealing at elevated temperatures close to 1720C have remarkable effects on the hyperpolarization levels, enhancing them by upto 36-fold over materials annealed through conventional means. We unravel the intriguing material origins of these gains, and demonstrate they arise from a simultaneous improvement in NV electron relaxation time and coherence time, as well as the reduction of paramagnetic content, and an increase in 13C relaxation lifetimes. Overall this points to significant recovery of the diamond lattice from radiation damage as a result of the high-temperature annealing. Our work suggests methods for the guided materials production of fluorescent, 13C hyperpolarized, nanodiamonds and pathways for their use as multi-modal (optical and MRI) imaging and hyperpolarization agents.
Abstract The need for load flexibility and increased efficiency of energy‐intensive processes has become more and more important in recent years. Control of the process variables plays a decisive role in maximizing the efficiency of a plant. The widely used control models of linear model predictive controllers (LMPC) are only partly suitable for nonlinear processes. One possibility for improvement is machine learning. In this work, one approach for a purely data‐driven controller based on reinforcement learning is explored at an air separation plant (ASU) in productive use. The approach combines the model predictive controller with a data‐generated nonlinear control model. The resulting controller and its control performance are examined in more detail on an ASU in real operation and compared with the previous LMPC solution. During the tests, stable behavior of the new control concept could be observed for several weeks in productive operation.
Abstract Methods of optical dynamic nuclear polarization open the door to the replenishable hyperpolarization of nuclear spins, boosting their nuclear magnetic resonance/imaging signatures by orders of magnitude. Nanodiamond powder rich in negatively charged nitrogen vacancy defect centers has recently emerged as one such promising platform, wherein 13 C nuclei can be hyperpolarized through the optically pumped defects completely at room temperature. Given the compelling possibility of relaying this 13 C polarization to nuclei in external liquids, there is an urgent need for the engineered production of highly “hyperpolarizable” diamond particles. Here, a systematic study of various material dimensions affecting optical 13 C hyperpolarization in diamond particles is reported on. It is discovered surprisingly that diamond annealing at elevated temperatures ∼1720 °C has remarkable effects on the hyperpolarization levels enhancing them by above an order of magnitude over materials annealed through conventional means. It is demonstrated these gains arise from a simultaneous improvement in NV − electron relaxation/coherence times, as well as the reduction of paramagnetic content, and an increase in 13 C relaxation lifetimes. This work suggests methods for the guided materials production of fluorescent, 13 C hyperpolarized, nanodiamonds and pathways for their use as multimodal (optical and magnetic resonance) imaging and hyperpolarization agents.