Neuroblastoma, the most common extracranial solid tumour of childhood, is a malignancy of unknown origin and non-specific symptoms. One of the markers of the disease is GD2 ganglioside (disialoganglioside), which is abundantly expressed on the surface of neuroblastoma cells. Gangliosides are known to be shed by tumour cells and this phenomenon can be significant in cancer progression as they inhibit a number of immune responses both in vitro and in vivo. In search for novel markers useful in monitoring and prognosis of neuroblastoma, we developed and validated a new quantitative method of GD2 ganglioside analysis in human blood plasma. We evaluated the level of gangliosides in blood serum of 34 neuroblastoma patients using high-performance liquid chromatography. The technique was used to detect fluorescently labelled oligosaccharides derived from serum glycosphingolipids by enzymatic digestion with ceramide glycanase. The developed method allowed determination of GD2 concentrations at the picomole level and required only 40 microl of plasma, which should be particularly useful when the quantity of clinical material is limiting. Moreover, this method can be applied to study concentration of other gangliosides, as shown for GD3 ganglioside. Analysis of plasma samples from the 34 neuroblastoma patients did not reveal any correlations between the concentration of GD2 ganglioside and clinical parameters, including the results of therapy; it showed, however, that the concentration of GD2 ganglioside in the plasma of neuroblastoma patients decreased substantially in the course of treatment.
Transforming growth factor-beta (TGF beta 1), a multipotent immunoregulatory peptide produced by human platelets, has been shown to stimulate the synthesis of fibrinogen, contrapsin, complement component C3, and alpha-1-proteinase inhibitor by murine hepatocytes cultured for 2 days in DMEM containing 1 microM insulin and dexamethasone and 0.2% BSA. In the range of 10 pg to 10 ng/ml TGF-beta 1 did not elicit any change in albumin secretion. Two main inflammatory cytokines: interleukin-6 (IL-6) and interleukin-1 (IL-1), known to stimulate two different subsets of murine acute phase plasma proteins, failed to increase contrapsin and alpha-1-proteinase inhibitor production. Epidermal growth factor (EGF) in the concentration 1 ng to 10 ng/ml effectively counteracted the stimulatory effect of TGF-beta 1 on acute phase protein production. TGF-beta 1-induced fibrinogen protein levels were associated with increased beta-fibrinogen mRNA content. TGF-beta 1 appears to be an additional physiological factor responsible for the direct stimulation of normal mouse hepatocytes to acute phase response.
The article presents personal memories of Professor Aleksander Koj’s alumni. Professor Aleksander Koj was a world-class biochemist of significant scientific achievements, a renowned authority in the field of acute-phase response regulation and acute-phase proteins. He was an excellent academic, a true Master, admired and followed by many Polish biochemists. Thrice he served as the Rector of the Jagiellonian University in Krakow. He navigated the University through a difficult time of political transformation in Poland, modernized the management system of the University and led to the commencement of the construction of the new University campus. He was the co-creator and the first Chairman of the Conference of Rectors of Academic Schools in Poland. He will be remembered as a devoted community worker aiming at strengthening the bond between the Polish community abroad and our homeland, propagating knowledge, promoting the concept of European integration, democracy and tolerance, as well as the collaboration between scientists, artists and men and women of culture. He was wise, righteous, and noble. Many had the honor of calling him their friend, and a great many saw in him a moral authority.
Neuroblastoma is the most common extra-cranial solid tumor of childhood and it is characterized by the presence of a glycosphingolipid, GD2 ganglioside.Monoclonal antibodies targeting the antigen are currently tested in clinical trials.Additionally, several research groups reported results revealing that ganglioside-specific antibodies can affect cellular signaling and cause direct cytotoxicity against tumor cells.To shed more light on gene expression signatures of tumor cells, we used microarrays to analyze changes of transcriptome in IMR-32 human neuroblastoma cell cultures treated with doxorubicin (DOX) or a mouse monoclonal antibody binding to GD2 ganglioside 14G2a (mAb) for 24 h.The obtained results highlight that disparate cellular pathways are regulated by doxorubicin and 14G2a.Next, we used RT-PCR to verify mRNA levels of selected DOX-responsive genes such as RPS27L, PPM1D, SESN1, CDKN1A, TNFSF10B, and 14G2a-responsive genes such as SVIL, JUN, RASSF6, TLX2, ID1.Then, we applied western blot and analyzed levels of RPS27L, PPM1D, sestrin 1 proteins after DOX-treatment.Additionally, we aimed to measure effects of doxorubicin and topotecan (TPT) and 14G2a on expression of a novel human NDUFAF2 gene encoding for mimitin protein (MYC-induced mitochondrial protein) and correlate it with expression of the MYCN gene.We showed that expression of both genes was concomitantly decreased in the 14G2a-treated IMR-32 cells after 24 h and 48 h.Our results extend knowledge on gene expression profiles after application of DOX and 14G2a in our model and reveal promising candidates for further research aimed at finding novel anti-neuroblastoma targets.
We have recently shown that mRNA and protein of PHLDA1 (pleckstrin-homology-like domain family A, member 1) were by far the most upregulated molecules upon treatment of IMR-32 cells with the anti-GD2 ganglioside monoclonal antibody 14G2a. Hence, we decided to study functions of PHLDA1 using human neuroblastoma IMR-32 cells as a model. Here, we show that constitutive expression of mRNA and protein of the PHLDA1 gene in IMR-32 cells was inversely correlated with transcript of the AURKA gene and Aurora A oncoprotein. Next, we silenced PHLDA1 expression in IMR-32 cells using an shRNA interference method. We report that IMR-32 cells with stable downregulation of PHLDA1 showed enhanced cellular ATP levels and an increase in mitochondrial membrane potential, as compared to control and non-transduced cells. We demonstrated that downregulation of PHLDA1 leads to a significant increase in expression of Aurora A and TRKB that are markers of poor prognosis in neuroblastoma. Also, we measured an increase in Aurora A and Akt kinases phosphorylation in the cells. Most importantly, PHLDA1-silenced cells were less susceptible to apoptosis than control cells, as shown by the lower expression of cleaved caspase-3 and PARP as well as a decreased activity of caspase-3 and -7. Our study negatively correlates expression of PHLDA1 and Aurora A in IMR-32 cells and sheds new light on functions of PHLDA1 in the neuroblastoma tumor cells, suggesting its role as a pro-apoptotic protein. Additionally, our results show possible links of the protein to regulation of features of mitochondria and formation of autophagosomes.
The role of the inflammation-silencing ribonuclease, MCPIP1 (monocyte chemoattractant protein-induced protein 1), in neoplasia continuous to emerge. The ribonuclease can cleave not only inflammation-related transcripts but also some microRNAs (miRNAs) and viral RNAs. The suppressive effect of the protein has been hitherto suggested in breast cancer, clear cell renal cell carcinoma, osteosarcoma, and neuroblastoma. Our previous results have demonstrated a reduced levels of several oncogenes, as well as inhibited growth of neuroblastoma cells upon MCPIP1 overexpression. Here, we investigate the mechanisms underlying the suppression of MYCN proto-oncogene, bHLH transcription factor (MYCN)-amplified neuroblastoma cells overexpressing the MCPIP1 protein. We showed that the levels of several transcripts involved in cell cycle progression decreased in BE(2)-C and KELLY cells overexpressing MCPIP1 in a ribonucleolytic activity-dependent manner. However, RNA immunoprecipitation indicated that only AURKA mRNA (encoding for Aurora A kinase) interacts with the ribonuclease. Furthermore, the application of a luciferase assay suggested MCPIP1-dependent destabilization of the transcript. Further analyses demonstrated that the entire conserved region of AURKA seems to be indispensable for the interaction with the MCPIP1 protein. Additionally, we examined the effect of the ribonuclease overexpression on the miRNA expression profile in MYCN-amplified neuroblastoma cells. However, no significant alterations were observed. Our data indicate a key role of the binding and cleavage of the AURKA transcript in an MCPIP1-dependent suppressive effect on neuroblastoma cells.
We have previously described inhibition of the synthesis of three acute‐phase inflammatory cytokines in human and rat macrophages by acetate esters of rooperol, a dicatechol of plant origin. Analysing the mechanism of anticytokine activity of rooperol, we compared levels of TNF α , IL‐1 β and IL‐6 mRNAs in the human promonocytic U937 cell line pretreated with phorbol myristate acetate (PMA) and incubated with rooperol tetraacetate (RTA) alone or in combination with LPS (500 ng/ml). It was found that 10 μM RTA decreased the levels of cytokine mRNAs both in the presence and absence of LPS, suggesting pretranslational inhibition of cytokine synthesis. Electrophoretic mobility shift analysis (EMSA) showed that RTA may influence cytokine mRNA expression by decreasing the binding activity of transcription factors NF‐ κB and AP‐1.
Albumin, fibrinogen, alpha 1-acid glycoprotein and cysteine proteinase inhibitor were determined by electroimmunoassay in the media of primary cultures of rat hepatocytes exposed to dialysed supernatants of rat, mouse and human macrophages or to recombinant human and murine interleukin 1 and tumour necrosis factor. Recombinant cytokines in the range of 1 to 1000 ng/ml caused only reduction of albumin synthesis and slight stimulation of alpha 1 acid glycoprotein production while crude preparations of macrophage cytokines elicited typical acute phase response. The results suggest that interleukin 1 or tumour necrosis factor are not likely the principal mediators responsible for the direct stimulation of normal rat hepatocytes to acute phase protein synthesis.
Signals mediated by the chemokine CXCL12 and its receptor CXCR4 are involved in the progression of ovarian cancer through enhancement of tumor angiogenesis and immunosuppressive networks that regulate dissemination of peritoneal metastasis and development of cancer-initiating cells (CICs). In this study, we investigated the antitumor efficacy of a CXCR4 antagonist expressed by oncolytic vaccinia virus (OVV) against an invasive variant of the murine epithelial ovarian cancer cell line ID8-T. This variant harbors a high frequency of CICs that form multilayered spheroid cells and express the hyaluronan receptor CD44, as well as stem cell factor receptor CD117 (c-kit). Using an orthotopic ID8-T tumor model, we observed that i.p. delivery of a CXCR4 antagonist-expressing OVV led to reduced metastatic spread of tumors and improved overall survival compared with oncolysis alone. Inhibition of tumor growth with the armed virus was associated with efficient killing of CICs, reduced expression of ascitic CXCL12 and vascular endothelial growth factor, and decreases in i.p. numbers of endothelial and myeloid cells, as well as plasmacytoid dendritic cells. These changes, together with reduced recruitment of T regulatory cells, were associated with higher ratios of IFN-γ(+)/IL-10(+) tumor-infiltrating T lymphocytes, as well as induction of spontaneous humoral and cellular antitumor responses. Similarly, the CXCR4 antagonist released from virally infected human CAOV2 ovarian carcinoma cells inhibited peritoneal dissemination of tumors in SCID mice, leading to improved tumor-free survival in a xenograft model. Our findings demonstrate that OVV armed with a CXCR4 antagonist represents a potent therapy for ovarian CICs with a broad antitumor repertoire.