Alzheimer disease (AD) pathology starts long before clinical symptoms manifest, and there is no therapy to treat, delay, or prevent the disease. A shared blood circulation between 2 mice (aka parabiosis) or repeated injections of young blood plasma (plasma from 2- to 3-month-old mice) into old mice has revealed benefits of young plasma on synaptic function and behavior. However, to our knowledge, the potential benefit of young blood has not been tested in preclinical models of neurodegeneration or AD.To determine whether young blood plasma ameliorates pathology and cognition in a mouse model for AD and could be a possible future treatment for the disease.In this preclinical study, mice that harbor a human mutant APP gene, which causes familial AD, were aged to develop AD-like disease including accumulation of amyloid plaques, loss of synaptic and neuronal proteins, and behavioral deficits. The initial parabiosis studies were done in 2010, and the final studies were conducted in 2014. Alzheimer disease model mice were then treated either by surgically connecting them with a young healthy mouse, thus providing a shared blood circulation through parabiosis, or through repeated injections of plasma from young mice.Neuropathological parameters and changes in hippocampal gene expression in response to the treatment were assessed. In addition, cognition was tested in AD model mice intravenously injected with young blood plasma.Aged mutant amyloid precursor protein mice with established disease showed a near complete restoration in levels of synaptic and neuronal proteins after exposure to young blood in parabiosis (synaptophysin P = .02; calbindin P = .02) or following intravenous plasma administration (synaptophysin P < .001; calbindin P = .14). Amyloid plaques were not affected, but the beneficial effects in neurons in the hippocampus were accompanied by a reversal of abnormal extracellular receptor kinase signaling (P = .05), a kinase implicated in AD. Moreover, young plasma administration was associated with improved working memory (P = .01) and associative memory (P = .02) in amyloid precursor protein mice.Factors in young blood have the potential to ameliorate disease in a model of AD.
Abstract Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging.
Changed synapse density has been suggested to be involved in the altered brain connectivity underlying schizophrenia (SCZ) pathology. However, postmortem studies addressing this topic are heterogeneous and it is not known whether changes are restricted to specific brain regions. Using meta-analysis, we systematically and quantitatively reviewed literature on the density of postsynaptic elements in postmortem brain tissue of patients with SCZ compared to healthy controls. We included 3 outcome measurements for postsynaptic elements: dendritic spine density (DSD), postsynaptic density (PSD) number, and PSD protein expression levels. Random-effects meta-analysis (31 studies) revealed an overall decrease in density of postsynaptic elements in SCZ (Hedges's g: −0.33; 95% CI: −0.60 to −0.05; P = .020). Subgroup analyses showed reduction of postsynaptic elements in cortical but not subcortical tissues (Hedges's g: −0.44; 95% CI: −0.76 to −0.12; P = .008, Hedges's g: −0.11; 95% CI: −0.54 to 0.35; P = .671) and specifically a decrease for the outcome measure DSD (Hedges's g: −0.81; 95% CI: −1.37 to −0.26; P = .004). Further exploratory analyses showed a significant decrease of postsynaptic elements in the prefrontal cortex and cortical layer 3. In all analyses, substantial heterogeneity was present. Meta-regression analyses showed no influence of age, sex, postmortem interval, or brain bank on the effect size. This meta-analysis shows a region-specific decrease in the density of postsynaptic elements in SCZ. This phenotype provides an important cellular hallmark for future preclinical and neuropathological research in order to increase our understanding of brain dysconnectivity in SCZ.
Abstract Background Emerging evidence suggests that peripheral immunity plays an important role in the progression of Alzheimer’s disease (AD) (Gate et al., 2020). However, more understanding on how peripheral immune cells respond to AD pathology is needed before utilizing the immune system further for early diagnosis and therapeutic treatment. Here, we aimed to map the immune system in the early stages of amyloidosis. In addition, we aimed to characterize the aged immune system and to study the effect of age‐related circulating immune factors on the immune response. Method We used 6‐month‐old APPswe/PS1dE9 (APP/PS1) transgenic and wild type (WT) mice to study the immune response to amyloid‐beta pathology and 20 month‐old WT mice for characterization of the aged immune system. In addition, both 6‐month‐old WT and APP/PS1 mice received multiple injections with aged blood plasma derived from 20‐month‐old WT mice. Next, immunohistochemical and high‐dimensional single‐cell analysis using time‐of‐flight mass cytometry (CyTOF), allowing detection of different immune populations and their activation status, was performed to map the circulating and brain‐resident immune cells in the different conditions (Figure 1). Result Immunohistochemical analysis revealed that T cell infiltration in the 6‐month‐old APP/PS1 brain coincided with early amyloid‐beta plaque formation. Single cell analysis of circulating and brain‐resident immune cells of APP/PS1 mice showed that especially T cells clustered in different cell‐subsets and had increased expression of activation and cell‐adhesion molecules compared to young WT mice. In contrast, circulating and brain‐resident T cells of aged mice contained more regulatory cell subsets and increasingly expressed molecules involved in immune inhibition. Interestingly, initial analysis revealed that injections with aged WT blood plasma partially reduced the aforementioned differences in T cells between young WT and APP/PS1 mice. Conclusion We found that circulating and brain‐resident T cells were different in their subsets and expression profile in early amyloid‐beta accumulation and in aging. In addition, the activation status of APP/PS1‐derived T cells was reduced after exposure to aged WT blood plasma resulting in a T‐cell signature more similar to young WT mice. Currently, we are further investigating the peripheral immune response to amyloid‐beta pathology by lipid‐ and RNA profiling of the circulating immune cells.
Abstract Dysregulation of microglial function contributes to Alzheimer’s disease (AD) pathogenesis. Several genetic and transcriptome studies have revealed microglia specific genetic risk factors, and changes in microglia expression profiles in AD pathogenesis, viz . the human-Alzheimer’s microglia/myeloid (HAM) profile in AD patients and the disease-associated microglia profile (DAM) in AD mouse models. The transcriptional changes involve genes in immune and inflammatory pathways, and in pathways associated with Aβ clearance. Aβ oligomers have been suggested to be the initial trigger of microglia activation in AD. To study the direct response to Aβ oligomers exposure, we assessed changes in gene expression in an in vitro model for microglia, the human monocyte-derived microglial-like (MDMi) cells. We confirmed the initiation of an inflammatory profile following LPS stimulation, based on increased expression of IL1B, IL6 , and TNFα . In contrast, the Aβ 1-42 oligomers did not induce an inflammatory profile or a classical HAM or DAM profile. Interestingly, we observed a specific increase in the expression of metallothioneins in the Aβ 1-42 oligomer treated MDMi cells. Metallothioneins are involved in metal ion regulation, protection against reactive oxygen species, and have anti-inflammatory properties. In conclusion, our data suggests that Aβ 1-42 oligomers may trigger a protective response both in vitro and in vivo .
The human GFAP splice variants GFAPΔ164 and GFAPΔexon6 both result in a GFAP protein isoform with a unique out-of-frame carboxy-terminus that can be detected by the GFAP+1 antibody. We previously reported that GFAP+1 was expressed in astrocytes and in degenerating neurons in Alzheimer's disease brains. In this study we aimed at further investigating the neuronal GFAP+1 expression and we started by affinity purifying the GFAP+1 antibody. The purified antibody resulted in a loss of neuronal GFAP+1 signal, although other antibodies directed against the amino- and carboxy-terminus of GFAPα still revealed GFAP-immunopositive neurons, as described before. With an in-depth analysis of a western blot, followed by mass spectrometry we discovered that the previously detected neuronal GFAP+1 expression was due to cross-reactivity of the antibody with neurofilament-L (NF-L). This was confirmed by double-label fluorescent immunohistochemistry and western blotting with the unpurified GFAP+1 antibody and an antibody against NF-L. Our data imply that NF-L can accumulate in some tangle-like structures in Alzheimer brains. More importantly, the purified GFAP+1 antibody clearly revealed a specific subtype of astrocytes in the adult human brain. These large astrocytes are present throughout the brain, e.g., along the subventricular zone, in the hippocampus, in the striatum and in the spinal cord of controls, Alzheimer, and Parkinson patients. The presence of a specific GFAP-isoform suggests a specialized function of these astrocytes.
Aging coincides with major changes in brain immunity that aid in a decline in neuronal function. Here, we postulate that systemic, pro-aging factors contribute to immunological changes that occur within the brain during aging. To investigate this hypothesis, we comprehensively characterized the central and peripheral immune landscape of 20-month-old male mice using cytometry by time-of-flight (CyTOF) and investigated the role of age-associated circulating factors. We found that CD8+ T cells expressing programmed cell death protein 1 (PD1) and tissue-resident memory CD8+ T cells accumulated in the aged brain while levels of memory T cells rose in the periphery. Injections of plasma derived from 20-month-old mice into 5-month-old receiving mice decreased the frequency of splenic and circulating naïve T cells, increased memory CD8+ T cells, and non-classical, patrolling monocytes in the spleen, and elevated levels of regulatory T cells and non-classical monocytes in the blood. Notably, CD8+ T cells accumulated within white matter areas of plasma-treated mice, which coincided with the expression of vascular cell adhesion molecule 1 (VCAM-1), a mediator of immune cell trafficking, on the brain vasculature. Taken together, we here describe age-related immune cell changes in the mouse brain and circulation and show that age-associated systemic factors induce the expansion of CD8+ T cells in the aged brain.
Coronavirus disease 2019 (COVID-19) patients initially develop respiratory symptoms, but they may also suffer from neurological symptoms. People with long-lasting effects after acute infections with severe respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., post-COVID syndrome or long COVID, may experience a variety of neurological manifestations. Although we do not fully understand how SARS-CoV-2 affects the brain, neuroinflammation likely plays a role.