The Pan Africa Bean Research Alliance is a network of national agricultural research centers (NARS), and private and public sector institutions that work to deliver better beans with consumer and market preferred traits to farmers. The datasets presented here draw from 17 Sub Saharan countries that are members of PABRA. The dataset on released bean varieties is a collection of 513 bean varieties released by NARS and there characteristics. The dataset on bean varieties and the relationship to constraints provides the 513 bean varieties on the basis of resistance to constraints such as fungal, bacterial, viral, diseases and tolerance to abiotic stresses. There is also a dataset of bean varieties that have been released in more than one country, useful for moving seed from one country to another and facilitating regional trade. The dataset on Niche market traits provides the market defined classifications for bean trade in Sub Saharan Africa as well as varieties that fall into these classifications. The datasets are an update to the 2011 discussion on PABRAs achievement in breeding and delivery of bean varieties in Buruchara et. 2011 in pages 236 and 237 here: http://www.ajol.info/index.php/acsj/article/view/74168 . It is also an update to a follow up to this discussion in Muthoni, R. A., Andrade, R. 2015 on the performance of bean improvement programmes in sub-Saharan Africa from the perspectives of varietal output and adoption in chapter 8. here: http://dx.doi.org/10.1079/9781780644011.0148. The data is extracted from the PABRA M&E database available here (http://database.pabra-africa.org/?location=breeding).
Breeding for heat stress tolerance became a priority in sub-Saharan Africa (SSA), as projections are showing an increase in frequency, duration, and severity. In this study, 14 heat stress tolerant-donor lines (HSTDLs) sourced from CIMMYT-India (males) were crossed with 15 locally adapted elite lines (females) developed within the CIMMYT-Zimbabwe maize-breeding program using the North Carolina Design II mating scheme. The resultant 175 single crosses were evaluated alongside five commercial hybrids and adjacent to the trial of parental lines used in the crosses across two locations representing heat stress and optimal environments in Zimbabwe. The design II analysis showed significant (p < 0.01) general combining ability (GCA) effects for exotic heat donor lines and specific combining ability (SCA) effects on grain yield under heat stress, optimal conditions, and across locations; demonstrating additive and non-additive genetic inheritance of grain yield. High Baker’s ratios observed in this study indicate predominance of additive over non-additive gene effects. Three exotic HSTDLs, namely CAL14138, CAL152, and CAL1440, exhibited significant (p < 0.001) and positive GCA effects under heat stress conditions. The results imply that these exotic lines could serve as valuable genetic resources for introgression of heat tolerant alleles into local maize populations for accelerated yield genetic gains. Single crosses, DJ265-15 × VL1018816 and DJ267-9 × CAL1440, exhibited positive and significant (p < 0.01) and (p < 0.05) SCA effects for grain yield under heat stress conditions, respectively. These crosses can be used for further breeding and can contribute to grain yield performance under heat stress conditions. The exotic HSTDLs, CAL14138, CAL152, and VL109126 showed superior per se performance under heat, optimal conditions, and across environments. Overall data demonstrate the potential of exotic HSTDLs for improving the adaptation of maize to heat stress in sub-tropical breeding programs.
Pan African Bean Research Alliance (PABRA) specifically invests finance, human resource and time in ensuring that the continents bean researchers and staff are up to date and relevant with skills they require. The data sets presented here have been assembled from multiple sources to provide and indicative position of skill and knowledge building initiatives by PABRA and its various partners. The data sets show the number of people trained between the year 2003 t0 2016. Though the data sets provide the numbers, discussion on capacity building as a whole is available in the capacity building section of the PABRA website.
The data set presents a summary of students according to study themes. Data presented is only for those students having their themes defined. Refer to codebook for variable definitions
Common bean (Phaseolus vulgaris L.) is an important staple crop for smallholder farmers, particularly in Eastern and Southern Africa. To support common bean breeding and seed dissemination, a high throughput SNP genotyping platform with 1500 established SNP assays has been developed at a genotyping service provider which allows breeders without their own genotyping infrastructure to outsource such service. A set of 708 genotypes mainly composed of germplasm from African breeders and CIAT breeding program were assembled and genotyped with over 800 SNPs. Diversity analysis revealed that both Mesoamerican and Andean gene pools are in use, with an emphasis on large seeded Andean genotypes, which represents the known regional preferences. The analysis of genetic similarities among germplasm entries revealed duplicated lines with different names as well as distinct SNP patterns in identically named samples. Overall, a worrying number of inconsistencies was identified in this data set of very diverse origins. This exemplifies the necessity to develop and use a cost-effective fingerprinting platform to ensure germplasm purity for research, sharing and seed dissemination. The genetic data also allows to visualize introgressions, to identify heterozygous regions to evaluate hybridization success and to employ marker-assisted selection. This study presents a new resource for the common bean community, a SNP genotyping platform, a large SNP data set and a number of applications on how to utilize this information to improve the efficiency and quality of seed handling activities, breeding, and seed dissemination through molecular tools.
A summary of 357 released varieties in the periods 2003 to 2016 and from 17 countries in Sub Saharan Africa. The varieties are presented 4 year time periods.
The 357 released bean varieties in the collection were released and accepted by farmers on the basis of resistance to two or more production constraints that are either fungal, bacterial or viral diseases and tolerant to abiotic stresses like low soil fertility and drought. The constraints are ordered into two clusters: Biotic constraints include; Anth=Anthracnose, ALS=Angular, Leaf Spot, CBB=Common bacterial blight, HB=Halo Blight, BCMV=Bean Common Mosaic virus, BSM=Bean Steam Maggot, Aphids spp, Ascchyta spp, Ascochyta spp, BSM, Pod borer, Rust, and WB=Web blight. Abiotic constraints include; Drought, Flooding, Lodging, Low soil fertility, Low soil acidity, Low soil PH, poor soils, and shattering. Datasets for days to maturity and the growth habit as either Bush or climber are also presented.
Navy bean (Phaseolus vulgaris L.) provides important raw materials for the bean canning industry. This article reviews grain compositional aspects influencing the canning and quality attributes of canned navy beans and breeding methodologies and strategies used to develop genotypes with superior canning-quality traits. Cultivars that are destined for the bean canning industry should meet the set canning-quality standards regardless of their yield potential. A number of phenotypic quality parameters are used to predict the final canning quality of genotypes. Primary quality parameters mainly comprise washed drained weight, processing quality index, and texture. Phenotyping for these traits is very expensive and requires grain quantities that can only be obtained in the advanced filial generations, making it difficult to breed for. Molecular marker-assisted selection has not yet contributed much to the improvement of canning quality in navy beans. However, it has the potential to facilitate the genetic improvement of several canning-quality traits. The review paper concludes with a number of recommendations. There exists a need for harmonizing protocols and standards for canning quality by breeders and processors, development and release of navy bean cultivars that combine high grain Fe and Zn content and drought tolerance with good canning qualities, and evaluation of genotypes across a number of environments. A need exists to identify stable and specifically adapted genotypes with respect to canning quality and drought tolerance, hasten the identification of molecular markers that are linked to canning-quality traits; and mainstream demand-led breeding in breeding programs to satisfy the market requirements.
The migration of Ug99 variants of Puccinia graminis f. sp. tritici is of concern to global wheat production (1). Seven races have been characterized in the Ug99 lineage (3), three of which occur in South Africa (4). During surveys of wheat fields for Ug99 in Zimbabwe and Mozambique in August and September 2010, high stem rust severities were found at Chiredzi, Chisumbanje, and Birchenough in Zimbabwe and at Rotanda in Mozambique. Stem rust was widespread in the lowlands (<800 m above sea level) of Zimbabwe and trace amounts were present in the mid-altitude areas. In Mozambique, stem rust was only observed at Rotanda (sample Moz1001). Collections from Chiredzi (samples Zim1004 and Zim1005), Chisumbanje (Zim1006), and Birchenough (Zim1009 and Zim1010) yielded viable urediniospores for infection studies. According to race analysis conducted on seedlings of the North American stem rust differential set (2) in a greenhouse at 18 to 25°C, Zim1005 and Zim1006 were typed as PTKST and Zim1004 and Zim1009 as TTKSF. Both TTKSF and PTKST were detected in the Zim1010 sample. Race analysis experiments were conducted three times. Urediniospores of isolate Moz1001 were not viable in infection studies, but yielded fungal DNA for simple sequence repeat (SSR) analysis. Using eight selected SSR primer combinations (4), all six isolates clustered within the Ug99 lineage. Isolates Zim1005, Zim1006, Zim1009, Zim1010, and Moz1001 and the stem rust control races TTKSF, TTKSK, and PTKST grouped into two main clusters, with Zim1009 and Zim1010 clustering together and sharing 88% similarity with the rest of the isolates. Zim1005 and Zim1006 were identical to TTKSF and TTKSK, respectively. Zim1004 shared 96% genetic similarity with the TTKSP control, with these two sharing 74% genetic similarity with the remaining isolates. The SSR data correlated with the infection data, except for Zim1004, which was typed as TTKSF but clustered close to TTKSP. Wheat cvs. SC Nduna, SC Shine, SC Stallion, SC Smart, Kana, Insiza, and Dande are predominant in Zimbabwe. Cv. SC Stallion and other unidentified cultivars were susceptible to P. graminis f. sp. tritici in the field in Zimbabwe. In Mozambique, the tall, local cv. Sitsonko was susceptible to P. graminis f. sp. tritici but no infections were observed on SC Nduna or SC Shine. The similarity in P. graminis f. sp. tritici races in Zimbabwe, South Africa, and Mozambique suggests that inoculum is exchanged within the region and explains the detection of race PTKST in South Africa in 2009. Trajectory models showed winds originating at Birchenough in October 2009, where stem rust was observed, passing directly over KwaZulu-Natal, South Africa within 48 to 72 h. Race PTKST was confirmed from collections in KwaZulu-Natal in November 2009 (4). The confirmation of Sr31 virulence in race PTKST in Zimbabwe is important because it provides new geographical records for an Ug99-related race and puts Southern African cultivars with 1B.1R resistance at risk. References: (1) D. Hodson. Euphytica 179:93, 2011. (2) Y. Jin et al. Plant Dis. 92:923, 2008. (3) R. F. Park et al. Euphytica 179:109, 2011. (4) B. Visser et al. Euphytica 179:119, 2011.