A respiratory disorder was noted in a 5-year-old female orangutan kept in the Yongin Farmland. Radiographically, multiple radiodense foci ranging from 2 to 6 mm diameter were seen throughout the lung lobes. Grossly, the thoracic cavity revealed a firm texture and grayish-pink discoloration of the left apical lung lobe. Histopathologically, multifocal areas of granulomatous pneumonia present the right and left apical lung lobes. Both primers from IS 1081 and IS6110 targeting 196 bp and 245 bp respectively were used in polymerase chain reaction, Mycobacterium tuberculosis was isolated from liver and confirmed by polymerase chain reaction.
Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising therapeutic target for treating various cancers (such as breast cancer, liver cancer, etc.) and other diseases (blood diseases, cardiovascular diseases, etc.), owing to its observed overexpression, thereby presenting significant opportunities in drug development. Since its discovery in 2004, extensive research has been conducted on LSD1 inhibitors, with notable contributions from computational approaches. This review systematically summarizes LSD1 inhibitors investigated through computer-aided drug design (CADD) technologies since 2010, showcasing a diverse range of chemical scaffolds, including phenelzine derivatives, tranylcypromine (abbreviated as TCP or 2-PCPA) derivatives, nitrogen-containing heterocyclic (pyridine, pyrimidine, azole, thieno[3,2-b]pyrrole, indole, quinoline and benzoxazole) derivatives, natural products (including sanguinarine, phenolic compounds and resveratrol derivatives, flavonoids and other natural products) and others (including thiourea compounds, Fenoldopam and Raloxifene, (4-cyanophenyl)glycine derivatives, propargylamine and benzohydrazide derivatives and inhibitors discovered through AI techniques). Computational techniques, such as virtual screening, molecular docking and 3D-QSAR models, have played a pivotal role in elucidating the interactions between these inhibitors and LSD1. Moreover, the integration of cutting-edge technologies such as artificial intelligence holds promise in facilitating the discovery of novel LSD1 inhibitors. The comprehensive insights presented in this review aim to provide valuable information for advancing further research on LSD1 inhibitors.
Background: Overexpression of LSD1 is associated with the occurrence of many diseases, including cancers, which makes LSD1 a significant target for anticancer drug research. Methodology & Results: With the aid of 3D quantitative structure–activity relationship models established with 34 reported resveratrol derivative LSD1 inhibitors, derivatives 35–40 were designed. Absorption, distribution, metabolism and excretion calculations showed that they may have good bioavailability and drug likeness. Additionally, 35 and 37 presented good antitumor effects in an in vitro antiproliferative assay. Molecular docking and molecular dynamics simulation results indicated that 35 and 37 can establish extensive interactions with LSD1. Conclusion: The results of computational prediction and experimental validation suggest that 35 and 37 are effective antitumor inhibitors, which provides some ideas and directions for the development of new anticancer LSD1 inhibitors.
Single-channel electroencephalogram (EEG) is a cost-effective, comfortable, and non-invasive method for monitoring brain activity, widely adopted by researchers, consumers, and clinicians. The increasing number and proportion of articles on single-channel EEG underscore its growing potential. This paper provides a comprehensive review of single-channel EEG, focusing on development trends, devices, datasets, signal processing methods, recent applications, and future directions. Definitions of bipolar and unipolar configurations in single-channel EEG are clarified to guide future advancements. Applications mainly span sleep staging, emotion recognition, educational research, and clinical diagnosis. Ongoing advancements of single-channel EEG in AI-based EEG generation techniques suggest potential parity or superiority over multichannel EEG performance.