As hosts of numerous zoonotic pathogens, the role of raccoons needs to be considered in the One Health context. Raccoons progressively expand their range as invasive alien species in Europe. This study aimed to investigate the intestinal helminth fauna of raccoons in Baden-Wuerttemberg, Germany, as no such screening had ever been conducted there. In total, we obtained 102 animals from hunters in 2019 and 2020. Intestinal helminths were retrieved using the SSCT (segmented sedimentation and counting technique) and identified morphologically and by PCR-based Sanger sequencing. Fecal samples were assessed using the ELISA PetChekTM IP assay (IDEXX, Germany) and flotation technique. The artificial digestion method was employed for analyzing muscle tissue. We detected species of four nematode genera (Baylisascaris procyonis, Toxocara canis, Capillaria spp., and Trichuris spp.), three cestode genera (Atriotaenia cf. incisa/procyonis, Taenia martis, and Mesocestoides spp.), and three trematode genera (Isthmiophora hortensis/melis, Plagiorchis muris, and Brachylaima spp.). Echinococcus spp. and Trichinella spp. were not found. The invasive behavior and synanthropic habits of raccoons may increase the infection risk with these helminths in wildlife, domestic and zoo animals, and humans by serving as a connecting link. Therefore, it is crucial to initiate additional studies assessing these risks.
A fragment of a Dracunculus-like worm was extracted from the hind limb of a 2-year-old dog from Toledo, Spain. Cytochrome oxidase I and rRNA sequences confirmed an autochthonous mammalian Dracunculus worm infection in Europe. Sequence analyses suggest close relation to a parasite obtained from a North American opossum.
Abstract The two ixodid tick species Dermacentor reticulatus (Fabricius) and Dermacentor silvarum Olenev occur at the northern distribution limit of the genus Dermacentor in Eurasia, within the belt of $$34{-}60^\circ ~ \hbox {N}$$ 34-60∘N latitude. Whilst the distribution area of D. reticulatus extends from the Atlantic coast of Portugal to Western Siberia, that of D. silvarum extends from Western Siberia to the Pacific coast. In Western Siberia, the distribution areas of the two Dermacentor species overlap. Although the two tick species are important vectors of disease, detailed information concerning the entire distribution area, climate adaptation, and proven vector competence is still missing. A dataset was compiled, resulting in 2188 georeferenced D. reticulatus and 522 D. silvarum locations. Up-to-date maps depicting the geographical distribution and climate adaptation of the two Dermacentor species are presented. To investigate the climate adaptation of the two tick species, the georeferenced locations were superimposed on a high-resolution map of the Köppen–Geiger climate classification. The frequency distribution of D. reticulatus under different climates shows two major peaks related to the following climates: warm temperate with precipitation all year round (57%) and boreal with precipitation all year round (40%). The frequency distribution of D. silvarum shows also two major peaks related to boreal climates with precipitation all year round (30%) and boreal winter dry climates (60%). Dermacentor silvarum seems to be rather flexible concerning summer temperatures, which can range from cool to hot. In climates with cool summers D. reticulatus does not occur, it prefers warm and to a lesser extent hot summers. Lists are given in this paper for cases of proven vector competence for various agents of both Dermacentor species. For the first time, the entire distribution areas of D. reticulatus and D. silvarum were mapped using georeferenced data. Their climate adaptations were quantified by Köppen profiles.