ABSTRACT Autosomal recessive polycystic kidney disease (ARPKD) is caused primarily by mutations in PKHD1 , encoding fibrocystin (FPC), but Pkhd1 mutant mice fail to express renal cystic disease. In contrast, the renal lesion in Cys1 cpk/cpk ( cpk ) mice with loss of the cystin protein, closely phenocopy ARPKD. Recent identification of patients with CYS1 -related ARPKD prompted the investigations described herein. We analyzed cystin and FPC expression in mouse models ( cpk , rescued- cpk ( r - cpk ), Pkhd1 mutants) and cortical collecting duct (CCD) cell lines (wild type ( wt), cpk) . We found that cystin deficiency led to diminished FPC in both cpk kidneys and CCD cells. In r-cpk kidneys, FPC increased and siRNA of Cys1 in wt CCD cells reduced FPC. Conversely, FPC deficiency in Pkhd1 mutants did not affect cystin levels. Cystin deficiency and the associated reduction in FPC levels impacted the architecture of the primary cilium, but not ciliogenesis. Similar Pkhd1 mRNA levels in wt, cpk kidneys and CCD cells suggested posttranslational mechanisms directed FPC loss and studies of cellular protein degradation systems revealed selective autophagy as a possible mechanism. Loss of FPC from the NEDD4 E3 ubiquitin ligase complexes caused reduced polyubiquitination and elevated levels of functional epithelial sodium channel (NEDD4 target) in cpk cells. We propose that cystin is necessary to stabilize FPC and loss of cystin leads to rapid FPC degradation. FPC removal from E3-ligase complexes alters the cellular proteome and may contribute to cystogenesis through multiple mechanisms, that include MYC transcriptional regulation.
Abstract Autosomal recessive polycystic kidney disease (ARPKD) is a hereditary hepato-renal fibrocystic disorder and a significant genetic cause of childhood morbidity and mortality. Mutations in the Polycystic Kidney and Hepatic Disease 1 ( PKHD1 ) gene cause all typical forms of ARPKD. Several mouse strains carrying diverse genetically engineered disruptions in the orthologous Pkhd1 gene have been generated. The current study describes a novel spontaneous mouse recessive mutation causing a cystic liver phenotype resembling the hepato-biliary disease characteristic of human ARPKD. Here we describe mapping of the cystic liver mutation to the Pkhd1 interval on Chromosome 1 and identification of a frameshift mutation within Pkhd1 exon 48 predicted to result in premature translation termination. Mice homozygous for the new mutation, symbollzed Pkhd1 cyli , lack renal pathology, consistent with previously generated Pkhd1 mouse mutants that fail to recapitulate human kidney disease. We have identified a profile of alternatively spliced Pkhd1 renal transcripts that are distinct in normal versus mutant mice. The Pkhd1 transcript profile in mutant kidneys is consistent with predicted outcomes of nonsense-associated alternative splicing (NAS) and nonsense mediated decay (NMD). Overall levels of Pkhd1 transcripts in mutant mouse kidneys were reduced compared to kidneys of normal mice, and Pkhd1 encoded protein in mutant kidneys was undetectable by immunoblotting. We suggest that in Pkhd1 cyli /Pkhd1 cyli (cyli) mice, mutation-promoted Pkhd1 alternative splicing in the kidney yields transcripts encoding low-abundance protein isoforms lacking exon 48 encoded amino acid sequences that are sufficiently functional so as to attenuate expression of a renal cystic disease phenotype.
Abstract Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1 cpk / cpk ( cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1 , is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a predicted deleterious splicing defect in CYS1 . These findings suggest that mutations in the Cys1 mouse and CYS1 human orthologues cause an ARPKD phenotype that is driven by overexpression of the Myc proto-oncogene. Translational Statement The cystin-deficient cpk mouse is a model for the study of autosomal recessive polycystic kidney disease (ARPKD). We show that the cpk mouse phenotype is associated with altered Myc expression. To date, the clinical relevance of cystin deficiency to human disease was unclear, due to the absence of ARPKD cases associated with CYS1 mutations. We report the first case of ARPKD linked to a CYS1 mutation disrupting normal splicing. These findings confirm the relevance of cystin deficiency to human ARPKD, implicate Myc in disease initiation or progression, and validate the cpk mouse as a translationally relevant disease model.
We have previously mapped the interval on Chromosome 4 for a major polycystic kidney disease modifier (Mpkd) of the B6(Cg)-Cys1cpk/J mouse model of recessive polycystic kidney disease (PKD). Informatic analyses predicted that this interval contains at least three individual renal cystic disease severity-modulating loci (Mpkd1-3). In the current study, we provide further validation of these predicted effects using a congenic mouse line carrying the entire CAST/EiJ (CAST)-derived Mpkd1-3 interval on the C57BL/6J background. We have also generated a derivative congenic line with a refined CAST-derived Mpkd1-2 interval and demonstrated its dominantly-acting disease-modulating effects (e.g., 4.2-fold increase in total cyst area; p<0.001). The relative strength of these effects allowed the use of recombinants from these crosses to fine map the Mpkd2 effects to a <14 Mbp interval that contains 92 RefSeq sequences. One of them corresponds to the previously described positional Mpkd2 candidate gene, Kif12. Among the positional Mpkd2 candidates, only expression of Kif12 correlates strongly with the expression pattern of Cys1 across multiple anatomical nephron structures and developmental time points. Also, we demonstrate that Kif12 encodes a primary cilium-associated protein. Together, these data provide genetic and informatic validation of the predicted renal cystic disease-modulating effects of Mpkd1-3 loci and implicate Kif12 as the candidate locus for Mpkd2.
Jab1 (Jun activation domain binding protein 1), integrated into COP9 signalosome complex (CSN), induces protein instability of many tumor suppressors and cell cycle regulators and is therefore a novel target in cancer therapy. Curcumin, an inhibitor of Jab1/CSN-associated kinase(s), has been reported to suppress tumor growth; however, curcumin is highly hydrophobic, and this feature prevents its usage as an antitumor drug. To increase the solubility and targeted delivery, we generated a water-soluble polyethylene glycol (PEG)-conjugated curcumin system, in which curcumin is covalently linked to PEG35kD. PEGylated curcumin showed much greater reduction of cell growth than free curcumin in pancreatic cancer cells. Cells treated with PEGylated curcumin had increased arrest at the mitotic phase with the formation of abnormal multinucleated cells, indicating that this compound affects cell cycle progression, which may contribute to cell growth inhibition. The stabilities of Jab1 target proteins were also examined. PEGylated curcumin increased protein stability of these proteins in pancreatic cancer cells and directly inhibited the activity of Jab1/CSN-associated kinases. Moreover, the inhibitory effect of PEGylated curcumin on cell proliferation was blunted in pancreatic cancer cells with Jab1 knockdown. The results suggest that PEGylated curcumin inhibits cell proliferation through suppression of Jab1/CSN activity. More importantly, the new compound sensitized pancreatic cancer cells to gemcitabine-induced apoptosis and cell proliferation inhibitory effects. Collectively, the PEGylated curcumin conjugate has much more potent effects on pancreatic cancer cell growth inhibition than free curcumin. The current study provides a biologic rationale to treat patients with pancreatic adenocarcinoma with the nontoxic phytochemical conjugated to PEG for systemic delivery.