<p>Recruitment and follow-up: the Melbourne Collaborative Cohort Study Diagram showing study recruitment, exposure ascertainment and follow-up for Melbourne Collaborative Cohort Study participants.</p>
Clinical guidelines often use predicted lifetime risk from birth to define criteria for making decisions regarding breast cancer screening rather than thresholds based on absolute 5-year risk from current age.We used the Prospective Family Cohort Study of 14 657 women without breast cancer at baseline in which, during a median follow-up of 10 years, 482 women were diagnosed with invasive breast cancer. We examined the performances of the International Breast Cancer Intervention Study (IBIS) and Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) risk models when using the alternative thresholds by comparing predictions based on 5-year risk with those based on lifetime risk from birth and remaining lifetime risk. All statistical tests were 2-sided.Using IBIS, the areas under the receiver-operating characteristic curves were 0.66 (95% confidence interval = 0.63 to 0.68) and 0.56 (95% confidence interval = 0.54 to 0.59) for 5-year and lifetime risks, respectively (Pdiff < .001). For equivalent sensitivities, the 5-year incidence almost always had higher specificities than lifetime risk from birth. For women aged 20-39 years, 5-year risk performed better than lifetime risk from birth. For women aged 40 years or older, receiver-operating characteristic curves were similar for 5-year and lifetime IBIS risk from birth. Classifications based on remaining lifetime risk were inferior to 5-year risk estimates. Results were similar using BOADICEA.Our analysis shows that risk stratification using clinical models will likely be more accurate when based on predicted 5-year risk compared with risks based on predicted lifetime and remaining lifetime, particularly for women aged 20-39 years.
Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57–1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628–0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs. Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57–1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628–0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
<div>AbstractBackground:<p>DEPendency of association on the number of Top Hits (DEPTH) is an approach to identify candidate susceptibility regions by considering the risk signals from overlapping groups of sequential variants across the genome.</p>Methods:<p>We applied a DEPTH analysis using a sliding window of 200 SNPs to colorectal cancer data from the Colon Cancer Family Registry (CCFR; 5,735 cases and 3,688 controls), and Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO; 8,865 cases and 10,285 controls) studies. A DEPTH score > 1 was used to identify candidate susceptibility regions common to both analyses. We compared DEPTH results against those from conventional genome-wide association study (GWAS) analyses of these two studies as well as against 132 published susceptibility regions.</p>Results:<p>Initial DEPTH analysis revealed 2,622 (CCFR) and 3,686 (GECCO) candidate susceptibility regions, of which 569 were common to both studies. Bootstrapping revealed 40 and 49 candidate susceptibility regions in the CCFR and GECCO data sets, respectively. Notably, DEPTH identified at least 82 regions that would not be detected using conventional GWAS methods, nor had they been identified by previous colorectal cancer GWASs. We found four reproducible candidate susceptibility regions (2q22.2, 2q33.1, 6p21.32, 13q14.3). The highest DEPTH scores were in the human leukocyte antigen locus at 6p21 where the strongest associated SNPs were rs762216297, rs149490268, rs114741460, and rs199707618 for the CCFR data, and rs9270761 for the GECCO data.</p>Conclusions:<p>DEPTH can identify candidate susceptibility regions for colorectal cancer not identified using conventional analyses of larger datasets.</p>Impact:<p>DEPTH has potential as a powerful complementary tool to conventional GWAS analyses for discovering susceptibility regions within the genome.</p></div>
<p>Supplementary Table S8 shows the number of risk regions that are common to both CCFR and GECCO in stage 2 DEPTH analysis, as well as whether they are detected by logistic regression analysis or were in previous CRC GWAS studies.</p>