Gas diffusion layers (GDL) have a crucial importance in passive air breathing direct alcohol fuel cells as they play a pivotal role in governing fuel distribution on the anode side and in preventing water flooding on the cathode side. We report here a rapid, cost-effective, ex-situ method to study the wettability of GDLs by process fluids. A commercial Teflon® treated carbon cloth featuring a single microporous layer was used, because carbon cloths are anticipated to outperform carbon paper type GDLs at high humidity and high current density. The GDL structure was characterized by SEM, 3D microCT reconstruction, and surface profilometry. Wettability by aqueous alcohol mixtures was investigated by contact angle measurement and infrared thermography. Ethanol containing fuel offered better spreading characteristics than methanol, especially on the microporous side of the GDL. The surface behaviour of water was studied by recording the evaporation profile of a sessile water droplet using time dependent contact angle measurement and simultaneous weight loss measurement and thermography. The applicability of the Teflon-containing carbon cloth as a GDL was verified by its hydrophobic behaviour and its ability to reject water. We found evidence that the first stage of water evaporation occurs in constant contact angle mode, then a wetting mode transition takes place at approx. 0.65 relative evaporation time and the evaporation proceeds in constant contact radius mode.
The work presented in this thesis concernes two sorts of nanostructures: energetic-ion-impact-induced surface tracks and gas-deposited WO3 nanoparticles. Our aims to characterise these nanostuctures and understand the physical principles behind their formation are of general interests for basic science as well as of the field of nanotechnology.AFM studies of irradiated organic surfaces showed that individual ion impacts generate craters, most often accompanied by raised plastically deformed regions. Crater sizes were measured as a function of ion stopping power and incidence angle on various surfaces. Observed crater volumes were converted into estimates of total sputtering yields, which in turn were correlated with data from collector experiments. The observations were compared to predictions of theoretical sputtering models. The observed plastic deformations above grazing-incidence-ion penetration paths agree with predictions of the pressure pulse model. However, closer to the ion track, evaporative sputtering can occur.AFM images of gas-deposited WO3 nanoparticle-films indicated the formation of agglomerates. The size distribution of the agglomerates was measured to be log-normal, i.e. similar to the size distribution of the gas-phase nanoparticles forming the deposit. By simulations we could relatively well reproduce this observation. The agglomerates exhibited high thermal stability below 250°C when considering their size, implying that these porous films can be useful in applications involving elevated temperatures in the 250°C range. The appearance of the nanoparticles in the tapping-mode AFM images was sensitive to the free amplitude of the oscillating tip. We could show by model calculations that the high adhesion between the tip and the sample could account for some of these observations.
Abstract Spark ablation, a versatile, gas-phase physical nanoparticle synthesis method was employed to fabricate fiber-optic surface enhanced Raman scattering (SERS) sensors in a simple single-step process. We demonstrate that spark-generated silver nanoparticles can be simply deposited onto a fiber tip by means of a modified low-pressure inertial impactor, thus providing significant surface enhancement for fiber-based Raman measurements. The surface morphology of the produced sensors was characterized along with the estimation of the enhancement factor and the inter- and intra-experimental variation of the measured Raman spectrum as well as the investigation of the concentration dependence of the SERS signal. The electric field enhancement over the deposited silver nanostructure was simulated in order to facilitate the better understanding of the performance of the fabricated SERS sensors. A potential application in the continuous monitoring of a target molecule was demonstrated on a simple model system.
Anomalies in atomic force microscopy (AFM) based size determination of nanoparticles were studied via comparative analysis of experiments and numerical calculations. Single tungsten oxide nanoparticles with a mean diameter of $3\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ were deposited on mica and graphite substrates and were characterised by AFM. The size (height) of the nanoparticles, measured by tapping mode AFM, was found to be sensitive to the free amplitude of the oscillating tip, thus indicating that the images were not purely topographical. By comparing the experimental results to model calculations, we demonstrate that the dependence of the nanoparticle size on the oscillation amplitude of the tip is an inherent characteristic of the tapping mode AFM; it is also a function of physical properties such as elasticity and surface energy of the nanoparticle and the sample surface, and it depends on the radius of curvature of the tip. We show that good approximation of the real size can easily be obtained from plots of particle height vs free amplitude of the oscillating tip, although errors might persist for individual experiments. The results are valid for size (height) determination of any nanometer-sized objects imaged by tapping mode AFM.
Membrane separation processes are promising methods for wastewater treatment. Membrane fouling limits their wider use; however, this may be mitigated using photocatalytic composite materials for membrane preparation. This study aimed to investigate photocatalytic polyvinylidene fluoride (PVDF)-based nanocomposite membranes for treating model dairy wastewater containing bovine serum albumin (BSA). Membranes were fabricated via physical coating (with TiO2, and/or carbon nanotubes, and/or BiVO4) and blending (with TiO2). Another objective of this study was to compare membranes of identical compositions fabricated using different techniques, and to examine how various TiO2 concentrations affect the antifouling and cleaning performances of the blended membranes. Filtration experiments were performed using a dead-end cell. Filtration resistances, BSA rejection, and photocatalytic cleanability (characterized by flux recovery ratio (FRR)) were measured. The surface characteristics (SEM, EDX), roughness (measured by atomic force microscopy, AFM), wettability (contact angle measurements), and zeta potential of the membranes were also examined. Coated PVDF membranes showed higher hydrophilicity than the pristine PVDF membrane, as evidenced by a decreased contact angle, but the higher hydrophilicity did not result in higher fluxes, unlike the case of blended membranes. The increased surface roughness resulted in increased reversible fouling, but decreased BSA retention. Furthermore, the TiO2-coated membranes had a better flux recovery ratio (FRR, 97%) than the TiO2-blended membranes (35%). However, the TiO2-coated membrane had larger total filtration resistances and a lower water flux than the commercial pristine PVDF membrane and TiO2-blended membrane, which may be due to pore blockage or an additional coating layer formed by the nanoparticles. The BSA rejection of the TiO2-coated membrane was lower than that of the commercial pristine PVDF membrane. In contrast, the TiO2-blended membranes showed lower resistance than the pristine PVDF membrane, and exhibited better antifouling performance, superior flux, and comparable BSA rejection. Increasing the TiO2 content of the TiO2-blended membranes (from 1 to 2.5%) resulted in increased antifouling and comparable BSA rejection (more than 95%). However, the effect of TiO2 concentration on flux recovery was negligible.