A 3-D Monte Carlo (MC) ray-tracing radiative transfer model is tested for its ability to simulate the bidirectional reflectance factors (BRFs) of a grooved artificial target given SI-traceable measurements of the optical and topographic properties of the target's surface. The optical properties of a grooved target and an identical flat target were measured with the goniospectrophotometer at the National Metrology Institute of U.K. (NPL) and are traceable to the NPL scales of radiance factor. The topographic measurements were performed with the coordinate measuring machine at the National Metrology Institute of Finland (MIKES), and are traceable to the realization of the meter. The BRFs of the flat target were used to parameterize analytical scattering functions for rough surfaces. Similarly, the topographic measurement results were used to construct a structural model of the grooved target. Each element within this structural model then had its optical properties defined by the parameterized scattering function before the 3-D MC model simulated the BRFs of the grooved target under well-defined illumination and viewing conditions. The measured and modeled BRFs agreed for 72% of the measured geometries in the plane of incidence within the measurement and modeling uncertainties. The relative root-mean-squared (RMSE) error was 0.19. In the plane orthogonal to the plane of incidence, the measured and modeled BRFs agreed for 45% of the measured geometries, and the relative RMSE between measured and modeled values was 0.65.
In the standard quasar model, the accretion disk obscuration is due to the canonical dusty torus. Here, we argue that a substantial part of the quasar obscuration can come from the interstellar medium (ISM) when the quasars are embedded in compact starbursts. We use an obscuration-unbiased sample of 578 infrared (IR) quasars at $z\approx 1-3$ and archival ALMA submillimeter host galaxy sizes to investigate the ISM contribution to the quasar obscuration. We calculate SFR and ISM column densities for the IR quasars and a control sample of submillimeter galaxies (SMGs) not hosting quasar activity and show that: (1) the quasar obscured fraction is constant up to $\rm SFR\approx 300 \: M_{\odot} \: yr^{-1}$, and then increases towards higher SFR, suggesting that the ISM obscuration plays a significant role in starburst host galaxies, and (2) at $\rm SFR\gtrsim 300 \: M_{\odot} \: yr^{-1}$, the SMGs and IR quasars have similarly compact submillimeter sizes ($R_{\rm e}\approx 0.5-3\rm \: kpc$) and, consequently, the ISM can heavily obscure the quasar, even reaching Compton-thick ($N_{\rm H}>10^{24} \rm \: cm^{-2}$) levels in extreme cases. Based on our results, we infer that $\approx 10-30\%$ of the IR quasars with $\rm SFR\gtrsim 300 \: M_{\odot} \: yr^{-1}$ are obscured solely by the ISM.
In order to answer some of the major open questions in the fields of supermassive black hole (SMBH) and galaxy evolution, a complete census of SMBH growth, i.e., active galactic nuclei (AGN), is required. Thanks to deep all-sky surveys, such as those by the Wide-field Infrared Survey Explorer (WISE) and the Spectrum-Roentgen-Gamma (SRG) missions, this task is now becoming feasible in the nearby Universe. Here, we present a new survey, the Local AGN Survey (LASr), with the goal of identifying AGN unbiased against obscuration and determining the intrinsic Compton-thick (CT) fraction. First, we construct the most complete all-sky sample of galaxies within 100 Mpc from astronomical databases (90% completeness for log M_star/M_sun ~9.4), four times deeper than the current local galaxy reference, the Two Micron All-Sky Survey Redshift Survey (2MRS), which turns out to miss 20% of known luminous AGN. These 49k galaxies serve as parent sample for LASr, called LASr-GPS. It contains 4.3k already known AGN, >=82% of these are estimated to have L(12um) < 10^42.3 erg/s, i.e., are low-luminosity AGN. As a first method for identifying Seyfert-like AGN, we use WISE-based infrared colours, finding 221 galaxies at L(12um) >= 10^42.3 erg/s to host an AGN at 90% reliability, This includes 61 new AGN candidates and implies and optical type 2 fraction of 50 to 71%. We quantify the efficiency of this technique and estimate the total number of AGN with L_int(2-10 keV) >= 10^42 erg/s in the volume to be 362^+145_-116 (8.6^+3.5_-2.8 10^-5 Mpc^-3). X-ray brightness estimates indicate the CT fraction to be 40-55% to explain the Swift non-detections of the infrared selected objects. One third of the AGN within 100 Mpc remain to be identified and we discuss the prospects for the eROSITA all-sky survey.
Abstract Hard X-ray-selected samples of active galactic nuclei (AGN) provide one of the cleanest views of supermassive black hole accretion but are biased against objects obscured by Compton-thick gas column densities of N H > 10 24 cm −2 . To tackle this issue, we present the NuSTAR Local AGN N H Distribution Survey (NuLANDS)—a legacy sample of 122 nearby ( z < 0.044) AGN primarily selected to have warm infrared colors from IRAS between 25 and 60 μ m. We show that optically classified Type 1 and 2 AGN in NuLANDS are indistinguishable in terms of optical [O iii ] line flux and mid-to-far-infrared AGN continuum bolometric indicators, as expected from an isotropically selected AGN sample, while Type 2 AGN are deficient in terms of their observed hard X-ray flux. By testing many X-ray spectroscopic models, we show the measured line-of-sight column density varies on average by ∼1.4 orders of magnitude depending on the obscurer geometry. To circumvent such issues, we propagate the uncertainties per source into the parent column density distribution, finding a directly measured Compton-thick fraction of 35% ± 9%. By construction, our sample will miss sources affected by severe narrow-line reddening, and thus segregates sources dominated by small-scale nuclear obscuration from large-scale host-galaxy obscuration. This bias implies an even higher intrinsic obscured AGN fraction may be possible, although tests for additional biases arising from our infrared selection find no strong effects on the measured column density distribution. NuLANDS thus holds potential as an optimized sample for future follow-up with current and next-generation instruments aiming to study the local AGN population in an isotropic manner.
Hard X-ray-selected samples of Active Galactic Nuclei (AGN) provide one of the cleanest views of supermassive black hole accretion, but are biased against objects obscured by Compton-thick gas column densities of $N_{\rm H}$ $>$ 10$^{24}$ cm$^{-2}$. To tackle this issue, we present the NuSTAR Local AGN $N_{\rm H}$ Distribution Survey (NuLANDS)$-$a legacy sample of 122 nearby ($z$ $<$ 0.044) AGN primarily selected to have warm infrared colors from IRAS between 25$-$60 $\mu$m. We show that optically classified type 1 and 2 AGN in NuLANDS are indistinguishable in terms of optical [OIII] line flux and mid-to-far infrared AGN continuum bolometric indicators, as expected from an isotropically selected AGN sample, while type 2 AGN are deficient in terms of their observed hard X-ray flux. By testing many X-ray spectroscopic models, we show the measured line-of-sight column density varies on average by $\sim$ 1.4 orders of magnitude depending on the obscurer geometry. To circumvent such issues we propagate the uncertainties per source into the parent column density distribution, finding a directly measured Compton-thick fraction of 35 $\pm$ 9%. By construction, our sample will miss sources affected by severe narrow-line reddening, and thus segregates sources dominated by small-scale nuclear obscuration from large-scale host-galaxy obscuration. This bias implies an even higher intrinsic obscured AGN fraction may be possible, although tests for additional biases arising from our infrared selection find no strong effects on the measured column-density distribution. NuLANDS thus holds potential as an optimized sample for future follow-up with current and next-generation instruments aiming to study the local AGN population in an isotropic manner.
ABSTRACT In the standard quasar model, the accretion disc obscuration is due to the canonical dusty torus. Here, we argue that a substantial part of the quasar obscuration can come from the interstellar medium (ISM) when the quasars are embedded in compact starbursts. We use an obscuration-unbiased sample of 578 infrared (IR) quasars at z ≈ 1–3 and archival Atacama Large Millimetre/submillimetre Array submillimetre host galaxy sizes to investigate the ISM contribution to the quasar obscuration. We calculate star formation rates (SFR) and ISM column densities for the IR quasars and a control sample of submillimetre galaxies (SMGs) not hosting quasar activity and show that: (1) the quasar obscured fraction is constant up to $\rm SFR\approx 300 \: {\rm M}_{\odot } \: yr^{-1}$, and then increases towards higher SFR, suggesting that the ISM obscuration plays a significant role in starburst host galaxies, and (2) at $\rm SFR\gtrsim 300 \: {\rm M}_{\odot } \: yr^{-1}$, the SMGs and IR quasars have similarly compact submillimetre sizes ($R_{\rm e}\approx 0.5{\!-\!}3\,\mathrm{ kpc}$) and consequently, the ISM can heavily obscure the quasar, even reaching Compton-thick ($N_{\rm H}\gt 10^{24} \rm \: cm^{-2}$) levels in extreme cases. Based on our results, we infer that ${\approx} 10{\!-\!}30~{{ \rm per\ cent}}$ of the IR quasars with $\rm SFR\gtrsim 300 \: {\rm M}_{\odot } \: yr^{-1}$ are obscured solely by the ISM.
We have developed a multi-band ground viewing radiometer based on light-emitting diodes (LEDs) to create a self-calibrating sensing system for land-based measurements. The system is intended for in-situ data collection needed for vicarious calibration, using the reflectance-based method, for earth observing satellites. An autonomous prototype radiometer, which is part of a sensor web of 5 radiometers which could be geographically distributed over hundreds of meters, has been realized. Temporally continuous in-situ measurement of the land reflectance in 4 spectral bands, from 350 nm to 900 nm, are acquired. The system has the ability to regularly re-calibrate autonomously and in the field, communicating results to a remote home base.
X-ray surveys provide the most efficient means for the detection of active galactic nuclei (AGNs). However, they do face difficulties in detecting the most heavily obscured Compton-thick AGNs. The BAT detector on board the mission, operating in the very hard 14-195 keV band, has provided the largest samples of Compton-thick AGN in the Local Universe. However, even these flux-limited samples may miss the most obscured sources among the Compton-thick AGN population. A robust way to find these local sources is to systematically study volume-limited AGN samples detected in the IR or the optical part of the spectrum. Here, we utilise a local sample (<100 Mpc) of mid-IR-selected AGNs, unbiased against obscuration, to determine the fraction of Compton-thick sources in the Local Universe. When available, we acquired X-ray spectral information for the sources in our sample from previously published studies. In addition, to maximise the X-ray spectral information for the sources in our sample, we analysed eleven unexplored and observations, for the first time. In this way, we identified four new Compton-thick sources. Our results reveal an increased fraction of Compton-thick AGNs among the sources that have not been detected by BAT of 44 <!PCT!>. Overall, we have estimated a 25-30<!PCT!> share of Compton-thick sources in the Local Universe among mid-IR-selected AGNs. We find no evidence for any evolution of the AGN Compton-thick fraction with luminosity.
We present a catalog of hard X-ray serendipitous sources detected in the first 80 months of observations by the Nuclear Spectroscopic Telescope Array (NuSTAR). The NuSTAR serendipitous survey 80-month (NSS80) catalog has an unprecedented $\sim$ 62 Ms of effective exposure time over 894 unique fields (a factor of three increase over the 40-month catalog), with an areal coverage of $\sim $36 deg$^2$, larger than all NuSTAR extragalactic surveys. NSS80 provides 1274 hard X-ray sources in the $3-24$ keV band (822 new detections compared to the previous 40-month catalog). Approximately 76% of the NuSTAR sources have lower-energy ($<10$ keV) X-ray counterparts from Chandra, XMM-Newton, and Swift-XRT. We have undertaken an extensive campaign of ground-based spectroscopic follow-up to obtain new source redshifts and classifications for 427 sources. Combining these with existing archival spectroscopy provides redshifts for 550 NSS80 sources, of which 547 are classified. The sample is primarily composed of active galactic nuclei (AGN), detected over a large range in redshift ($z$ = 0.012-3.43), but also includes 58 spectroscopically confirmed Galactic sources. In addition, five AGN/galaxy pairs, one dual AGN system, one BL Lac candidate, and a hotspot of 4C 74.26 (radio quasar) have been identified. The median rest-frame $10-40$ keV luminosity and redshift of the NSS80 are $\langle{L_\mathrm{10-40 keV}}\rangle$ = 1.2 $\times$ 10$^{44}$ erg s$^{-1}$ and $\langle z \rangle = 0.56$. We investigate the optical properties and construct composite optical spectra to search for subtle signatures not present in the individual spectra, finding an excess of redder BL AGN compared to optical quasar surveys predominantly due to the presence of the host-galaxy and, at least in part, due to dust obscuration.