The prevalence of nontuberculous mycobacteria (NTM) has increased in tuberculosis (TB)-suspected clinical samples. These bacteria are now recognized as important emerging pathogens, which affect both immunocompetent and immunocompromised individuals. The aim of this study was to evaluate the frequency of NTM in clinical samples and to efficacy of genomic loci as targets for detection of NTM species. This cross-sectional study was performed on 8166 clinical samples to determine the presence of NTM species from April 2013 to December 2015. The phenotypic methods were applied for preliminary NTM identification. The PCR-RFLP assay of heat shock protein-65 (hsp-65) gene and multilocus sequence analysis based on 16S-23S internal transcribes spacer (ITS), rpoB, and 16S rRNA genes were applied for species identification. In a total of 520 isolates from TB-suspected cases, 61 samples (11.7%) were identified as NTM. Overall, Mycobacterium (M.) fortuitum (63.9%) was the most frequently encountered species, followed by M. kansasii (9.8%), M. simiae (9.8%), M. abscessus (6.7%), M. gordonae (4.9%), M. flavescens (3.3%), and M. setense (1.6%). Moreover, sequencing of 16S rRNA and rpoB genes could identify all NTM species. In conclusion, we showed that the samples were infected by six NTM species, and M. fortuitum was the most frequent NTM strain. Based on the findings, 16S rRNA and rpoB genes were superior to ITS gene in identification of NTM species.
The protease produced by the transmembrane serine protease 2 (TMPRSS2) gene enhances viral infections and has been linked to severe acute respiratory syndrome coronavirus 2 pathogenesis. Therefore, this study evaluated the association between TMPRSS2 and coronavirus disease 2019 (COVID-19) mortality. TMPRSS2 rs12329760 polymorphism was genotyped using the tetraprimer amplification refractory mutation system-polymerase chain reaction method in 592 dead and 693 improved patients. In the current study, the frequency of TMPRSS2 rs12329760 CC than TT genotypes was significantly lower in improved patients than in dead patients. According to the findings of the multivariate logistic regression test, higher levels of mean age, creatinine, erythrocyte sedimentation rate, C-reactive protein, aspartate aminotransferase, lower levels of 25-hydroxyvitamin D, uric acid, and real-time PCR Ct values and TMPRSS2 rs12329760 CC genotype were observed to be associated with increased COVID-19 mortality rates. In conclusion, the TMPRSS2 rs12329760 CC genotype was a polymorphism linked to a significantly higher incidence of severe COVID-19. Further studies are required to corroborate the obtained findings.
The interferon-induced transmembrane-protein 3 (IFITM3) is a vital component of the immune system's defense against viral infection. Variants in the IFITM3 gene have been linked to changes in expression and the risk of severe Coronavirus disease 2019 (COVID-19). This study aimed to investigate whether IFITM3 rs6598045, quantitative polymerase chain reaction (qPCR) cycle threshold (Ct) values, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are associated with an increased mortality rate of COVID-19.The genotyping of IFITM3 rs6598045 polymorphism was analyzed using the amplification refractory mutation system-polymerase chain reaction in 1342 recovered and 1149 deceased patients positive for SARS-CoV-2.In this study, IFITM3 rs6598045 G allele as minor allele frequency was significantly more common in the deceased patients than in the recovered ones. Furthermore, the highest mortality rates were observed in Delta variant and lowest qPCR Ct values. COVID-19 mortality was associated with IFITM3 rs6598045 GG and AG in Delta variant and IFITM3 rs6598045 AG in Alpha variant. A statistically significant difference was observed in the qPCR Ct values between individuals with GG and AG genotypes and those with an AA genotype.A possible correlation was observed between the mortality rate of COVID-19, the G allele of IFITM3 rs6598045, and SARS-CoV-2 variants. However, large-scale research is still required to validate our results.
Interleukin-28B (IL28B) single-nucleotide polymorphisms (SNPs) constitute important host-related factors influencing the response rate to Hepatitis C virus (HCV) standard antiviral therapy. In the last few years, several new technologies for SNP detection have been developed. However, the sensitivity and specificity of various methods are different and needs evaluation. Five different methods (resolution melting curve [RMC], polymerase chain reaction-restriction fragment length polymorphism [PCR-RFLP], PCR-sequencing analysis, amplification refractory mutation system [ARMS], and zip nucleic acid probe-based real-time PCR [ZNA]) were developed for genotyping rs12979860 associated with IL28B. In this study, limit of detection (LD), costs and turnaround time of these methods were compared in 350 subjects. As for IL28B rs12979860 polymorphisms, 348/350 (99.4%) samples were consistent among the five methods, while results for 2/350 (0.57%) samples were concordant by ZNAs and PCR-sequencing, and discordant by other methods. Without considering the cost of DNA extraction, the price of each reaction for ARMS-PCR, RMC, PCR-RFLP, ZNA and PCR-sequencing were respectively: US$3.10, US$5.0, US$5.50, US$8.50 and US$17.0. RMC was the fastest method, while the ZNA method was easy to use, reliable and effective. Lower LD was determined to be 50–60 copies/μL for the PCR-RFLP, RMC and ARMS-PCR assays; whilst ZNA assay was able to detect 2–3 copies/μL. In conclusion, in the current study, all four methods are suitable for IL28B rs12979860 genotyping, but the ZNA assay can be a reliable tool. Due to its lower LD for SNP identification, this method is better than others for detecting this type of polymorphism.
Host genetic factors may be correlated with the severity of coronavirus disease 2019 (COVID-19). Angiotensin-converting enzyme 2 (ACE2) plays a vital role in viral cell entrance. The current study aimed to evaluate the association of ACE2 rs2285666 polymorphism and clinical parameters with COVID-19 mortality. The ACE2 rs2285666 polymorphism was genotyped using the polymerase chain reaction-restriction fragment length polymorphism in 556 recovered and 522 dead patients. In this study, the frequency of ACE2 rs2285666 CC was significantly higher than TT genotype in dead patients. The multivariate logistic regression analysis results showed that the higher levels of alanine aminotransferase, alkaline phosphatase, creatinine, erythrocyte sedimentation rate, and C-reactive protein and the low levels of uric acid, cholesterol, low density lipoprotein, 25-hydroxyvitamin D, real-time PCR Ct values, and ACE2 rs2285666 CC genotype were associated with increased mortality rates after COVID-19. In conclusion, our findings demonstrated a possible link between COVID-19 mortality, clinical parameters, and ACE2 rs2285666 CC. Further research is required to confirm these results.
Nontuberculous mycobacteria (NTM) are ubiquitous bacteria that are naturally resistant to disinfectants and antibiotics and can colonize systems for supplying drinking water. Therefore, this study aimed to evaluate the prevalence of NTM in the drinking water of six hospitals in Tehran, Iran.Totally, 198 water samples were collected. Each water sample was filtered via a membrane filter with a pore size of 0.45 µm and then decontaminated by 0.005% cetylpyridinium chloride. The membrane filters were incubated on two Lowenstein-Jensen media at 25 °C and 37 °C for 8 weeks. The positive cultures were identified with phenotypic tests, and then NTM species were detected according to the hsp65, rpoB, and 16S rDNA genes. Drug susceptibility testing (DST) was also carried out.Overall, 76 (40.4%) of the isolates were slowly growing mycobacteria (SGM) and 112 (59.6%) of the ones were rapidly growing mycobacteria (RGM). The most common NTM were Mycobacterium aurum, M. gordonae, M. phocaicum, M. mucogenicum, M. kansasii, M. simiae, M. gadium, M. lentiflavum, M. fortuitum, and M. porcinum. Among these 188 samples, NTM ranged from 1 to > 300 colony-forming unit (CFU) /500 mL, with a median of 182 CFU/500 mL. In the infectious department of all hospitals, the amount of CFU was higher than in other parts of the hospitals. The DST findings in this study indicated the diversity of resistance to different drugs. Among RGM, M. mucogenicum was the most susceptible isolate; however, M. fortuitum showed a different resistance pattern. Also, among SGM isolates, M. kansasii and M. simiae, the diversity of DST indicated.The current study showed NTM strains could be an important component of hospital water supplies and a possible source of nosocomial infections according to the CFU reported in this study. The obtained findings also help clarify the dynamics of NTM variety and distribution in the water systems of hospitals in the research area.