Homogeneous chromium catalysts for the selective conversion of ethene to hex-1-ene are formed from Cr(III) reagents, aminothioether ligands of the type HN(CH2CH2SR)2, and aluminum reagents. In this study, the early activation steps are investigated by EPR, UV–visible, and Cr K-edge XAFS spectroscopy; rapid stopped-flow mixing and a freeze-quench allows good quality EXAFS analysis of a species formed in ∼1 s of reaction. This is shown to involve reduction to Cr(II) and deprotonation of a NH group of the auxiliary ligand. This 4-coordinate metal center may act as precursor for the coordination of ethene and subsequent selective oligomerization.
A series of Cr complexes varying in oxidation state, ligand and geometry were studied with Cr K‐edge XANES. The main absorption edge energy shift for an oxidation state change from Cr0 to Cr6+ is found to be similar to that for a series of Cr3+ complexes with different ligands. Theoretical XANES and density of states calculations using FEFF8.0 provided detailed insights in the origin of the XANES features for the series of distorted octahedral CrCl3L complexes. The geometry of the CrCl3L complex governs the position of the main absorption edge. Hard versus soft donor effects are overruled by the chlorine ligand for complexes with a facial geometry, whereas the chlorine ligand does not play a significant role in meridional geometry. The combined results call for a redefinition of generally used concepts like oxidation state.
A series of distorted octahedral Cr(III) complexes containing tridentate S-, S/O- or N-donor ligands comprised of three distinct architectures: facultative {S(CH(2)CH(2)SC(10)H(21))(2) (L(1)) and O(CH(2)CH(2)SC(10)H(21))(2) (L(2))}, tripodal {MeC(CH(2)S(n)C(4)H(9))(3) (L(3)), MeC(CH(2)SC(10)H(21))(3) (L(4))} and macrocyclic {(C(10)H(21))[9]aneN(3) (L(5)), (C(10)H(21))(3)[9]aneN(3) (L(6)), with [9]aneN(3)=1,4,7-triazacyclononane} are reported and characterised spectroscopically. Activation of [CrCl(3)(L)] with MMAO produces very active ethylene trimerisation, oligomerisation and polymerisation catalysts, with significant dependence of the product distribution upon the ligand type present. The properties of the parent [CrCl(3)(L)] complexes are probed by cyclic voltammetry, UV-visible, EPR, EXAFS and XANES measurements, and the effects upon activation with Me(3)Al investigated similarly. Treatment with excess Me(3)Al leads to substitution of Cl ligands by Me groups, generation of an EPR silent Cr species (consistent with a change in the oxidation state of the Cr to either Cr(II) or Cr(IV)) and substantial dissociation of the neutral S and S/O-donor ligands.