Context. The pursuit of more realistic spectroscopic modelling and consistent abundances has led us to begin a new series of papers designed to improve current solar and stellar abundances of various atomic species. To achieve this, we have begun updating the three-dimensional (3D) non-local thermodynamic equilibrium (non-LTE) radiative transfer code, MULTI3D, and the equivalent one-dimensional (1D) non-LTE radiative transfer code, MULTI 2.3.Aims. We examine our improvements to these codes by redetermining the solar barium abundance. Barium was chosen for this test as it is an important diagnostic element of the s -process in the context of galactic chemical evolution. New Ba II + H collisional data for excitation and charge exchange reactions computed from first principles had recently become available and were included in the model atom. The atom also includes the effects of isotopic line shifts and hyperfine splitting.Methods. A grid of 1D LTE barium lines were constructed with MULTI 2.3 and fit to the four Ba II lines available to us in the optical region of the solar spectrum. Abundance corrections were then determined in 1D non-LTE, 3D LTE, and 3D non-LTE. A new 3D non-LTE solar barium abundance was computed from these corrections.Results. We present for the first time the full 3D non-LTE barium abundance of A (Ba) = 2.27 ± 0.02 ± 0.01, which was derived from four individual fully consistent barium lines. Errors here represent the systematic and random errors, respectively.
Direct probes of the temporal evolution of stars are rare. We derive the time spent by S-type stars since the onset of the first thermal pulse, from the 99Tc – 99Ru and 93Zr – 93Nb chronometers. Zirconium and niobium abundances constrain as well the nucleosynthesis temperature, supporting 13C(α,n)16O as the s-process neutron source. Niobium abundances are used, for the first time, to efficiently separate stars with active nucleosynthesis from binary stars with fossil overabundances resulting from a previous mass transfer. The abundances of Tc, Nb, and Zr thus give access to the nucleosynthesis chronology and temperature, and provide a diagnostic of possible external pollution from a companion star.
We use moderate-resolution optical spectrophotometry and the new MARCS stellar atmosphere models to determine the effective temperatures of 74 Galactic red supergiants (RSGs). The stars are mostly members of OB associations or clusters with known distances, allowing a critical comparison with modern stellar evolutionary tracks. We find we can achieve excellent matches between the observations and the reddened model fluxes and molecular transitions, although the atomic lines Ca I λ4226 and Ca II H and K are found to be unrealistically strong in the models. Our new effective temperature scale is significantly warmer than those in the literature, with the differences amounting to 400 K for the latest type M supergiants (i.e., M5 I). We show that the newly derived temperatures and bolometric corrections give much better agreement with stellar evolutionary tracks. This agreement provides a completely independent verification of our new temperature scale. The combination of effective temperature and bolometric luminosities allows us to calculate stellar radii; the coolest and most luminous stars (KW Sgr, Case 75, KY Cyg, HD 206936=μ Cep) have radii of roughly 1500 R☉ (7 AU), in excellent accordance with the largest stellar radii predicted from current evolutionary theory, although smaller than that found by others for the binary VV Cep and for the peculiar star VY CMa. We find that similar results are obtained for the effective temperatures and bolometric luminosities using only the dereddened V - K colors, providing a powerful demonstration of the self-consistency of the MARCS models.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Barium stars are s-process enriched giants. They owe their chemical peculiarities to a past mass transfer phase. During which they were polluted by their binary companion, which at the time was an AGB star, but is now an extinct white dwarf. Barium stars are thus ideal targets for understanding and constraining the s-process in low and intermediate-mass AGB stars. We derive the abundances of a large number of heavy elements in order to shed light on the conditions of operation of the neutron source responsible for the production of s-elements in the former companions of the barium stars. Adopting a recently used methodology(Neyskens et al. 2015), we analyse a sample of 18 highly enriched barium stars observed with the high-resolution HERMES spectrograph mounted on the MERCATOR telescope (La Palma). We determine the stellar parameters and abundances using MARCS model atmospheres. In particular, we derive the Nb/Zr ratio which was previously shown to be a sensitive thermometer for the s-process nucleosynthesis. Indeed, in barium stars, $^{93}Zr$ has fully decayed into mono-isotopic $^{93}Nb$ , so Nb/Zr is a measure of the temperature-sensitive $^{93}Zr/Zr$ isotopic ratio. HD 28159, previously classified as K5III and initially selected to serve as a reference cool K star for our abundance analysis, turns out to be enriched in s-process elements, and as such is a new barium star. Four stars, characterised by high nitrogen abundances, also tend to have high [Nb/Zr] and [hs/ls] ratios. The derived Zr and Nb abundances provide more accurate constraints on the s-process neutron source, identified to be $^{13}C(alpha,n)^{16}O$ for barium stars. The comparison with stellar evolution and nucleosynthesis models shows that the investigated barium stars were polluted by a low-mass (2-3 Solar mass) AGB star. HD 100503 is potentially identified as the highest metallicity CEMP-rs star yet discovered.
Synthetic spectra are needed to determine fundamental stellar and wind parameters of all types of stars. They are also used for the construction of theoretical spectral libraries helpful for stellar population synthesis. Therefore, a database of theoretical spectra is required to allow rapid and quantitative comparisons to spectroscopic data. We provide such a database offering an unprecedented coverage of the entire Hertzsprung-Russell diagram. We present the POLLUX database of synthetic stellar spectra. For objects with Teff < 6 000 K, MARCS atmosphere models are computed and the program TURBOSPECTRUM provides the synthetic spectra. ATLAS12 models are computed for stars with 7 000 K 25 000 K). Their spectra are computed with CMF_FLUX. Both high resolution (R>150 000) optical spectra in the range 3 000 to 12 000 A and spectral energy distributions extending from the UV to near--IR ranges are presented. These spectra cover the HR diagram at solar metallicity. We propose a wide variety of synthetic spectra for various types of stars in a format that is compliant with the Virtual Observatory standards. A user--friendly web interface allows an easy selection of spectra and data retrieval. Upcoming developments will include an extension to a large range of metallicities and to the near--IR high resolution spectra, as well as a better coverage of the HR diagram, with the inclusion of models for Wolf-Rayet stars and large datasets for cool stars. The POLLUX database is accessible at http://pollux.graal.univ-montp2.fr/ and through the Virtual Observatory.