St. John's Wort (SJW) is known to induce expression and activity of cytochrome P4503A4 (CYP3A4). However, its effects on other cytochrome P450 (CYP) are not well understood. Our objective was to characterise the effect of SJW on the expression of CYP1A2 in the LS180 intestinal cell model.LS180 cells were cultured in the presence and absence of SJW extract for 48 hours. CYP1A2 protein content was measured by Western blot analysis using monoclonal antibody. Time-dependent expression of CYP1A2 was assessed during exposure to SJW extract for 24 hours and following its removal for another 24 hours.SJW increased the expression of CYP1A2 in the LS180 cells in a concentration dependent manner. The induction was time-dependent, as enzyme levels returned to baseline within 4-8 hours after removal of SJW.SJW reversibly induces expression of CYP1A2 in LS180 cells. This induction may be responsible for reduced plasma theophylline concentrations upon co-administration of SJW, as reported earlier.
Perturbations of the expression of transporters and drug-metabolizing enzymes (DMEs) by opioids can be the locus of deleterious drug-drug interactions (DDIs). Many transporters and DMEs are regulated by xenobiotic receptors [XRs; e.g., pregnane X receptor (PXR), constitutive androstane receptor (CAR), and Aryl hydrocarbon receptor (AhR)]; however, there is a paucity of information regarding the influence of opioids on XRs. The objective of this study was to determine the influence of oxycodone administration (15 mg/kg intraperitoneally twice daily for 8 days) on liver expression of XRs, transporters, and DMEs in rats. Microarray, quantitative real-time polymerase chain reaction and immunoblotting analyses were used to identify significantly regulated genes. Three XRs (e.g., PXR, CAR, and AhR), 27 transporters (e.g., ABCB1 and SLC22A8), and 19 DMEs (e.g., CYP2B2 and CYP3A1) were regulated (P < 0.05) with fold changes ranging from −46.3 to 17.1. Using MetaCore (computational platform), we identified a unique gene-network of transporters and DMEs assembled around PXR, CAR, and AhR. Therefore, a series of transactivation/translocation assays were conducted to determine whether the observed changes of transporters/DMEs are mediated by direct activation of PXR, CAR, or AhR by oxycodone or its major metabolites (noroxycodone and oxymorphone). Neither oxycodone nor its metabolites activated PXR, CAR, or AhR. Taken together, these findings identify a signature hepatic gene-network associated with repeated oxycodone administration in rats and demonstrate that oxycodone alters the expression of many transporters and DMEs (without direct activation of PXR, CAR, and AhR), which could lead to undesirable DDIs after coadministration of substrates of these transporters/DMEs with oxycodone.
The purpose of this investigation was to examine the impact of formulation and process changes on dissolution and bioavailability/bioequivalency of metoprolol tartrate tablets manufactured using a high-shear granulation process. A half-factorial (24-1, Res TV) design was undertaken to study the selected formulation and processing variables during scale-up. Levels and ranges for excipients and processing changes studied represented level 2 or greater changes as indicated by the SUPAC-IR Guidance. Blend and tableting properties were evaluated. Changes in sodium starch glycolate and magnesium stearate levels, and the order of addition microcrystalline cellulose (intra- vs. extragranular) were significant only in affecting percent drug released (Q) in 5,10, and 15 min. Statistical analysis of data showed no significant curvature. No interaction effects were found to be statistically significant. To examine the impact of formulation and processing variables on in vivo absorption, three batches were selected for a bioavailability study based on their dissolution profiles. Subjects received four metoprolol treatments (Lopressor®, slow-, medium-, and fast-dissolving formulations) separated by 1 week according to a randomized crossover design. After an overnight fast, subjects were administered one tablet (100 mg), blood samples were collected over 24 hr and plasma samples were analyzed. The formulations were found to be bioequivalent with respect to the log Cmax and log AUC0-∞. The results of this study suggest that: (i) bioavailability/bioequivalency studies may not be necessary for metoprolol tartrate and perhaps other class 1 drugs after level 2 type changes and (ii) in vitro dissolution tests may be used to show bioequivalence of metoprolol formulations with processing or formulation changes within the specified level 2 ranges for the equipment examined.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Enaminones, enamines of ß-dicarbonyl compounds, have been know for many years. In our initial account (Current Med. Chem. 1994, 1, 159-175), we reported on the anticonvulsant activity of a series of enaminones, notably methyl 4-[(p-chlorophenyl)amino]-6-methyl- 2-oxo-cyclohex-3-en-1-oate, 9a (R=CH 3 , R 1 =4-Cl), which, in animal tests, compared favorably to phenytoin and carbamazepine. Since that time, further research in our laboratory and other laboratories have expanded the therapeutic potential of these compounds. In addition to new anticonvulsant derivatives, we have uncovered a novel brain transport mechanism for the enaminones and developed a preliminary regression model for further synthetic direction. These topics will each be presented and elaborated.