Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) is a 140 kDa bi-functional enzyme involved in a coupled reaction, where the glutaminase active site produces ammonia that is subsequently utilized to convert FGAR to its corresponding amidine in an ATP assisted fashion. The structure of FGAR-AT has been previously determined in an inactive state and the mechanism of activation remains largely unknown. In the current study, hydrophobic cavities were used as markers to identify regions involved in domain movements that facilitate catalytic coupling and subsequent activation of the enzyme. Three internal hydrophobic cavities were located by xenon trapping experiments on FGAR-AT crystals and further, these cavities were perturbed via site-directed mutagenesis. Biophysical characterization of the mutants demonstrated that two of these three voids are crucial for stability and function of the protein, although being ∼20 Å from the active centers. Interestingly, correlation analysis corroborated the experimental findings, and revealed that amino acids lining the functionally important cavities form correlated sets (co-evolving residues) that connect these regions to the amidotransferase active center. It was further proposed that the first cavity is transient and allows for breathing motion to occur and thereby serves as an allosteric hotspot. In contrast, the third cavity which lacks correlated residues was found to be highly plastic and accommodated steric congestion by local adjustment of the structure without affecting either stability or activity.
Abstract Background Fullbred Chinese and Indian rhesus macaques represent genetically distinct populations. The California National Primate Research Center introduced Chinese founders into its Indian‐derived rhesus colony in response to the 1978 Indian embargo on exportation of animals for research and the concern that loss of genetic variation in the closed colony would hamper research efforts. The resulting hybrid rhesus now number well over a thousand animals and represent a growing proportion of the animals in the colony. Methods We characterized the population genetic structure of the hybrid colony and compared it with that of their pure Indian and Chinese progenitors. Results The hybrid population contains higher genetic diversity and linkage disequilibrium than their full Indian progenitors and represents a resource with unique research applications. Conclusions The genetic diversity of the hybrids indicates that the strategy to introduce novel genes into the colony by hybridizing Chinese founders and their hybrid offspring with Indian‐derived animals was successful.
Abstract Non‐natural protein sequences with native‐like structures and functions can be constructed successfully using consensus design. This design strategy is relatively well understood in repeat proteins with simple binding function, however detailed studies are lacking in globular enzymes. The SOD1 family is a good model for such studies due to the availability of large amount of sequence and structure data motivated by involvement of human SOD1 in the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). We constructed two consensus SOD1 enzymes from multiple sequence alignments from all organisms and eukaryotic organisms. A significant difference in their catalytic activities shows that the phylogenetic spread of the sequences used affects the fitness of the construct obtained. A mutation in an electrostatic loop and overall design incompatibilities between bacterial and eukaryotic sequences were implicated in this disparity. Based on this analysis, a bioinformatics approach was used to classify mutations thought to cause familial ALS providing a unique high level view of the physical basis of disease‐causing aggregation of human SOD1.
Abstract Peptidase E (PepE) is a nonclassical serine peptidase with a Ser‐His‐Glu catalytic triad. It is specific for dipeptides with an N‐terminal aspartate residue (Asp‐X dipeptidase activity). Its homolog from Listeria monocytogenes (PepElm) has a Ser‐His‐Asn “catalytic triad.” Based on sequence alignment we predicted that the PepE homolog from Deinococcus radiodurans (PepEdr) would have a Ser‐His‐Asp “catalytic triad.” We confirmed this by solving the crystal structure of PepEdr to 2.7 Å resolution. We show that PepElm and PepEdr lack the Asp‐X dipeptidase activity. Our analyses suggest that absence of P1 pocket in the active site could be the main reason for this lack of typical activity. Sequence and structural data reveal that the PepE homologs can be divided into long and short PepEs based on presence or absence of a C‐terminal tail which adopts a β‐hairpin conformation in the canonical PepE from Salmonella enterica . A long PepE from Bacillus subtilis with Ser‐His‐Asp catalytic triad exhibits Asp‐X dipeptidase activity. Whereas the three long PepEs enzymatically characterized till date have been found to possess the Asp‐X dipeptidase activity, the three enzymatically characterized short PepEs lack this activity irrespective of the nature of their catalytic triads. This study illuminates the structural and functional heterogeneity in the S51 family and also provides structural basis for the functional variability among PepE homologs.
LonA peptidase is a major component of the protein quality-control mechanism in both prokaryotes and the organelles of eukaryotes. Proteins homologous to the N-terminal domain of LonA peptidase, but lacking its other domains, are conserved in several phyla of prokaryotes, including the Xanthomonadales order. However, the function of these homologous proteins (LonNTD-like proteins) is not known. Here, the crystal structure of the LonNTD-like protein from Xanthomonas campestris (XCC3289; UniProt Q8P5P7) is reported at 2.8 Å resolution. The structure was solved by molecular replacement and contains one polypeptide in the asymmetric unit. The structure was refined to an Rfree of 29%. The structure of XCC3289 consists of two domains joined by a long loop. The N-terminal domain (residues 1-112) consists of an α-helix surrounded by β-sheets, whereas the C-terminal domain (residues 123-193) is an α-helical bundle. The fold and spatial orientation of the two domains closely resembles those of the N-terminal domains of the LonA peptidases from Escherichia coli and Mycobacterium avium. The structure is also similar to that of cereblon, a substrate-recognizing component of the E3 ubiquitin ligase complex. The N-terminal domains of both LonA and cereblon are known to be involved in specific protein-protein interactions. This structural analysis suggests that XCC3289 and other LonNTD-like proteins might also be capable of such protein-protein interactions.