7-day soil drought followed by 7-day rehydration was applied to potted German chamomile (Chamomilla recutita) plants at the beginning of their generative stage. Plants of a wild type (WT), plus two diploid (2n) and two tetraploid (4n) genotypes were studied, in order to examine the alterations in chlorophyll (Chl) and carotenoids (Car) contents, and chlorophyll fluorescence (CF) parameters during water shortage and rehydration. The fresh mass of the anthodia after the recovery was also studied.WT plants adjust better to water stress than modern breeding genotypes, because drought resulted in the low fall in leaf water content of WT, the lowest decrease in the fresh mass of its anthodia (a 41% decrease from the control), and the most elastic response of the photosynthetic apparatus. 4n C11/2 strain plants suffered from the highest reduction in anthodia yield (87%), and had the lowest constitutive pigment contents. It was also the only genotype which revealed nontypical alterations in various CF parameters obtained on a dark- and light-adapted leaf. During drought, a big increase was noticed in minimal, maximal, and variable fluorescence of PSII reaction centres in the dark- adapted (F0, Fm and Fv, respectively), and in the light-adapted state (F0', Fm' and Fv'). It was accompanied by the biggest decline in linear electron transport rate (ETR), quantum efficiency of PSII electron transport (ΦPSII) and photochemical quenching coefficient (qP). These alterations were prolonged to the stage when the normal leaf water content was retained. On the contrary, C6/2 strain plants had the highest constitutive Chl and Car contents, which additionally increased after rehydration, similarly to the values of F0, Fm and Fv, which reflects the high photosynthetic potential of this genotype. It was accompanied by the relatively high yield of its anthodia after drought. Considering the drop in the yield triggered by drought, it seems to be the only parameter which may be linked with the ploidy level.Although the yield formation of chamomile strains cannot simply be estimated by CF assay, this technique may serve as an additional tool in the selection of plants to drought. The following circumstances should be submitted; namely: measurement at the proper developmental stage of plants, in different water regimes, and an analysis of various CF parameters. The increase in F0 and F0', and the reduction in ETR, Fv'/Fm', ΦPSII and qP values in response to water deficit should be an indicator of the impairment of the photosynthetic apparatus through drought.
The aim of the study was to assess the physiological status of Brassica seedlings grown in two types of soils following a single application of smoke water (SW). One soil was contaminated with heavy metals from a local smelter, and another was sandy and poor in nutrients. Three-week monitoring indicated that soil composition was the primary factor affecting chlorophyll fluorescence (CF) parameters, growth, and development of seedlings, and the contaminants affected the plants more than the lack of nutrients. SW aggravated the negative impact of heavy metals, which became visible when the plants transiently suffered from the heavy metal exposure. Most of CF parameters changed suddenly but then the trend reversed indicating that plants gradually adapted to the specific conditions. However, this was not reflected in the final biomass of the seedlings. This might be due to redirection of photosynthates towards protective mechanisms against toxic effects of metals.
The effect of short warm breaks (from 15 min to 5 h) during chilling of three chilling‐sensitive species (tomato, maize and soybean) was investigated. Injuries, intensity of net photosynthesis and antioxidant enzyme activity were measured. Throughout chilling treatment, plants were warmed by transferring them during the last few hours of the light phase from chilling temperature (5 °C for tomato and maize, 2 °C for soybean) to 20 °C. After warming, seedlings were moved back to chilling conditions. Warm breaks of 5 h almost entirely prevented the appearance of injuries, as measured by changes in leakage of electrolytes and tissue water content, during 12 days of chilling. Even a 15‐min warm break ensured a significant decrease in injuries in chilled maize seedlings compared to continuously chilled seedlings. Inhibition of gas exchange and fluorescence in seedlings of two maize genotypes differing in chilling resistance was, to a small extent, prevented by 1‐h warm breaks, while 4‐h warm breaks reduced inhibition significantly. The length of the warm break (1 or 4 h) had no influence on changes in SOD activity compared to continuously chilled plants, but warm breaks of 4 h produced a significant increase in CAT activity. The possible influence of an alternative pathway in preventing injuries is discussed.