Abstract The eukaryotic initiation factor eIF4E is essential for cap-dependent initiation of translation in eukaryotes. Abnormal regulation of eIF4E has been implicated in oncogenic transformation. We developed an eIF4E-binding peptide derived from Angel1, a partner of eIF4E that we recently identified. We show here that this peptide fused to a penetratin motif causes drastic and rapid cell death in several epithelial cancer cell lines. This necrotic cell death was characterized by a drop in ATP levels with F-actin network injury being a key step in extensive plasma membrane blebbing and membrane permeabilization. This synthetic eIF4E-binding peptide provides a candidate pharmacophore for a promising new cancer therapy strategy.
Abstract Cell division in heart muscle cells progressively ceases during the development of the rat heart, leading to an adult stage with muscle cells incapable of cell division. We have quantitatively determined the number of dividing and nondividing heart muscle cells in cultures derived from different stages of the developing rat heart with the use of 3 HTdR continuous labeling and fluorescent antimyosin staining. The cultures were derived from 14 and 17 day postcoital (dPC) rat embryos and from 1 and 4 day postnatal (dPN) rats. The percent nondividing cells increased with development and the age of the postnatal rat. The percent nondividing cells in 14 dPC equalled 21%, 17 dPC equalled 25%, 1 dPN equalled 44%, and 4 dPN equalled 60%. This method for the quantitative determination of dividing and nondividing cells in the developing rat heart provides a model that is useful for the study of the mechanism of the loss of cell division capacity.
ABSTRACT The UL25 gene of pseudorabies virus (PrV) can encode a protein of about 57 kDa which is well conserved among herpesviruses. The UL25 protein of herpes simplex virus type 1 is a capsid constituent involved in virus penetration and capsid maturation. To identify and characterize the UL25 gene product of PrV, polyclonal mouse anti-UL25 antibodies were raised to a bacterially expressed fusion protein. In immunoblotting and immunoprecipitation assays of PrV-infected cell lysates, these anti-UL25 antisera specifically recognized a protein of the expected size with late expression kinetics. This 57-kDa product was also present in purified virions and was found to be associated with all types of capsids. Synthesis of a protein migrating at the same size point was directed from the eukaryotic expression plasmid pCG-UL25. To determine the subcellular localization of UL25, immunofluorescence studies with anti-UL25 antisera were performed on Nonidet P-40-extracted COS-7 cells infected with PrV or transfected with pCG-UL25. In PrV-infected cells, newly synthesized UL25 is directed mainly to distinct nuclear compartments, whereas UL25 expressed in the absence of other viral proteins is distributed more uniformly in the nucleus and colocalizes also with microtubules. To study the fate of UL25 at very early stages of infection, immunofluorescence experiments were performed on invading PrV particles in the presence or absence of drugs that specifically depolymerize components of the cytoskeleton. We found that the incoming nucleocapsids colocalize with microtubules during their transport to the nucleus and that UL25 remains associated with nucleocapsids during this transport.
ABSTRACT Glycoproteins gM and gN are conserved throughout the herpesviruses but are dispensable for viral replication in cell cultures. To assay for a function of these proteins in infection of an animal, deletion mutants of pseudorabies virus lacking gM or gN and corresponding revertants were analyzed for the ability to penetrate and propagate in the nervous systems of adult mice after intranasal inoculation. We demonstrate that neither of the two glycoproteins is required for infection of the nervous systems of mice by pseudorabies virus.
Abstract A method for killing dividing cells (Puck and Kao, '67) was adapted for the elimination of dividing heart muscle cells (myoblasts) in cultures. We have used this method to demonstrate their presence and to estimate their number as well as the number of nondividing heart muscle cells (myocytes) in the neo‐natal rat heart. Cells were cultivated in BUdR (5‐bromodeoxyuridine) 10 −4 M for 3 days and then irradiated with long UV light. The selective elimination of dividing cells led to a loss of myosin Ca 2+ ‐activated ATPase in the cultures. This indicates the presence of dividing cells which contain myosin. The percent of ATPase left after irradiation was 32% of the control in cultures derived from 1‐day postnatal rats and 48% in cultures from 4‐day postnatal rats. This reflects an in vivo shift of myoblasts to myocytes in the muscle cell population as the rat ages.