Muscle fibers of the tarantula femur exhibit structural and biochemical characteristics similar to those of other long-sarcomere invertebrate muscles, having long A-bands and long thick filaments. 9-12 thin filaments surround each thick filament. Tarantula muscle has a paramyosin:myosin heavy chain molecular ratio of 0.31 +/- 0.079 SD. We studied the myosin cross-bridge arrangement on the surface of tarantula thick filaments on isolated, negatively stained, and unidirectionally metal-shadowed specimens by electron microscopy and optical diffraction and filtering and found it to be similar to that previously described for the thick filaments of muscle of the closely related chelicerate arthropod, Limulus. Cross-bridges are disposed in a four-stranded right-handed helical arrangement, with 14.5-nm axial spacing between successive levels of four bridges, and a helical repeat period every 43.5 nm. The orientation of cross-bridges on the surface of tarantula filaments is also likely to be very similar to that on Limulus filaments as suggested by the similarity between filtered images of the two types of filaments and the radial distance of the centers of mass of the cross-bridges from the surfaces of both types of filaments. Tarantula filaments, however, have smaller diameters than Limulus filaments, contain less paramyosin, and display structure that probably reflects the organization of the filament backbone which is not as apparent in images of Limulus filaments. We suggest that the similarities between Limulus and tarantula thick filaments may be governed, in part, by the close evolutionary relationship of the two species.
The extent of ATP synthesis from ADP and Pi at the active centre of myosin subfragment 1 has been reinvestigated. The results have been interpreted using a treatment which is not dependent on the number or nature of the intermediates in the ATPase mechanism. An average value for the binding constant of ATP of (3.25 +/- 0.96) X 10(11) M-1 at pH 8.0 23 degrees C and ionic strength 0.12 M was obtained. Additional evidence is given to confirm that synthesis at the active site has been investigated.
The structure of muscle thick filaments has been elucidated by a combination of electron microscopic and X-ray diffraction methods. Although X-ray diffraction provides much detailed information about the structure of the filaments, a long-standing problem is the number of myosin molecules per repeating unit along the filament. Direct measurements using STEM have recently established that in vertebrate skeletal muscle and insect flight muscle there are respectively 3 and 4 myosin molecules in each 145Å. period along the filament.