Recombination rate is an essential parameter for many genetic analyses. Recombination rates are highly variable across species, populations, individuals and different genomic regions. Due to the profound influence that recombination can have on intraspecific diversity and interspecific divergence, characterization of recombination rate variation emerges as a key resource for population genomic studies and emphasises the importance of high-density genetic maps as tools for studying genome biology. Here we present such a high-density genetic map for Daphnia magna, and analyse patterns of recombination rate across the genome.A F2 intercross panel was genotyped by Restriction-site Associated DNA sequencing to construct the third-generation linkage map of D. magna. The resulting high-density map included 4037 markers covering 813 scaffolds and contigs that sum up to 77 % of the currently available genome draft sequence (v2.4) and 55 % of the estimated genome size (238 Mb). Total genetic length of the map presented here is 1614.5 cM and the genome-wide recombination rate is estimated to 6.78 cM/Mb. Merging genetic and physical information we consistently found that recombination rate estimates are high towards the peripheral parts of the chromosomes, while chromosome centres, harbouring centromeres in D. magna, show very low recombination rate estimates.Due to its high-density, the third-generation linkage map for D. magna can be coupled with the draft genome assembly, providing an essential tool for genome investigation in this model organism. Thus, our linkage map can be used for the on-going improvements of the genome assembly, but more importantly, it has enabled us to characterize variation in recombination rate across the genome of D. magna for the first time. These new insights can provide a valuable assistance in future studies of the genome evolution, mapping of quantitative traits and population genetic studies.
Abstract Sex chromosomes can evolve during the evolution of genetic sex determination (GSD) from environmental sex determination (ESD). Despite theoretical attention, early mechanisms involved in the transition from ESD to GSD have yet to be studied in nature. No mixed ESD-GSD animal species have been reported, except for some species of Daphnia , small freshwater crustaceans in which sex is usually determined solely by the environment, but in which a dominant female sex-determining locus is present in some populations. This locus follows Mendelian single-locus inheritance, but has otherwise not been characterized genetically. We now show that the sex-determining genomic region maps to the same low-recombining peri-centromeric region of linkage group 3 (LG3) in three highly divergent populations of D. magna , and spans 3.6 Mb. Despite low levels of recombination, the associated region contains signs of historical recombination, suggesting a role for selection acting on several genes thereby maintaining linkage disequilibrium among the 36 associated SNPs. The region carries numerous genes involved in sex differentiation in other taxa, including transformer2 and sox9 . Taken together, the region determining the NMP phenotype shows characteristics of a sex-related supergene, suggesting that LG3 is potentially an incipient W chromosome despite the lack of significant additional restriction of recombination between Z and W. The occurrence of the female-determining locus in a pre-existing low recombining region illustrates one possible form of recombination suppression in sex chromosomes. D. magna is a promising model for studying the evolutionary transitions from ESD to GSD and early sex chromosome evolution.
Due to the lack of recombination, asexual organisms are predicted to accumulate mutations and show high levels of within-individual allelic divergence (heterozygosity); however, empirical evidence for this prediction is largely missing. Instead, evidence of genome homogenization during asexual reproduction is accumulating. Ameiotic crossover recombination is a mechanism that could lead to long genomic stretches of loss of heterozygosity (LOH) and unmasking of mutations that have little or no effect in heterozygous state. Therefore, LOH might be an important force for inducing variation among asexual offspring and may contribute to the limited longevity of asexual lineages. To investigate the genetic consequences of asexuality, here we used high-throughput sequencing of Daphnia magna for assessing the rate of LOH over a single generation of asexual reproduction. Comparing parthenogenetic daughters with their mothers at several thousand genetic markers generated by restriction site-associated DNA (RAD) sequencing resulted in high LOH rate estimation that largely overlapped with our estimates for the error rate. To distinguish these two, we Sanger re-sequenced the top 17 candidate RAD-loci for LOH, and all of them proved to be false positives. Hence, even though we cannot exclude the possibility that short stretches of LOH occur in genomic regions not covered by our markers, we conclude that LOH does not occur frequently during asexual reproduction in D. magna and ameiotic crossovers are very rare or absent. This finding suggests that clonal lineages of D. magna will remain genetically homogeneous at least over time periods typically relevant for experimental work.
Identifying the presence and magnitude of population genetic structure remains a major consideration in evolutionary biology as doing so allows one to understand the demographic history of a species as well as make predictions of how the evolutionary process will proceed. Next-generation sequencing methods allow us to reconsider previous ideas and conclusions concerning the distribution of genetic variation, and what this distribution implies about a given species evolutionary history. A previous phylogeographic study of the crustacean Daphnia magna suggested that, despite strong genetic differentiation among populations at a local scale, the species shows only moderate genetic structure across its European range, with a spatially patchy occurrence of individual lineages. We apply RAD sequencing to a sample of D. magna collected across a wide swath of the species' Eurasian range and analyse the data using principle component analysis (PCA) of genetic variation and Procrustes analytical approaches, to quantify spatial genetic structure. We find remarkable consistency between the first two PCA axes and the geographic coordinates of individual sampling points, suggesting that, on a continent-wide scale, genetic differentiation is driven to a large extent by geographic distance. The observed pattern is consistent with unimpeded (i.e. no barriers, landscape or otherwise) migration at large spatial scales, despite the fragmented and patchy nature of favourable habitats at local scales. With high-resolution genetic data similar patterns may be uncovered for other species with wide geographic distributions, allowing an increased understanding of how genetic drift and selection have shaped their evolutionary history.
Abstract The breeding systems of many organisms are cryptic and difficult to investigate with observational data, yet they have profound effects on a species’ ecology, evolution, and genome organization. Genomic approaches offer a novel, indirect way to investigate breeding systems, specifically by studying the transmission of genetic information from parents to offspring. Here we exemplify this method through an assessment of self-fertilization vs. automictic parthenogenesis in Daphnia magna. Self-fertilization reduces heterozygosity by 50% compared to the parents, but under automixis, whereby two haploid products from a single meiosis fuse, the expected heterozygosity reduction depends on whether the two meiotic products are separated during meiosis I or II (i.e., central vs. terminal fusion). Reviewing the existing literature and incorporating recombination interference, we derive an interchromosomal and an intrachromosomal prediction of how to distinguish various forms of automixis from self-fertilization using offspring heterozygosity data. We then test these predictions using RAD-sequencing data on presumed automictic diapause offspring of so-called nonmale producing strains and compare them with “self-fertilized” offspring produced by within-clone mating. The results unequivocally show that these offspring were produced by automixis, mostly, but not exclusively, through terminal fusion. However, the results also show that this conclusion was only possible owing to genome-wide heterozygosity data, with phenotypic data as well as data from microsatellite markers yielding inconclusive or even misleading results. Our study thus demonstrates how to use the power of genomic approaches for elucidating breeding systems, and it provides the first demonstration of automictic parthenogenesis in Daphnia.
Abstract Meiosis, the cell division by which eukaryotes produce haploid gametes, is essential for fertility in sexually reproducing species. This process is sensitive to temperature, and can fail outright at temperature extremes. At less extreme values, temperature affects the genome‐wide rate of homologous recombination, which has important implications for evolution and population genetics. Numerous studies in laboratory conditions have shown that recombination rate plasticity is common, perhaps nearly universal, among eukaryotes. These studies have also shown that variation in the length or timing of stresses can strongly affect results, raising the important question whether these findings translate to more variable field conditions. Moreover, lower or higher recombination rate could cause certain kinds of meiotic aberrations, especially in polyploid species—raising the additional question whether temperature fluctuations in field conditions cause problems. Here, we tested whether (1) recombination rate varies across a season in the wild in two natural populations of autotetraploid Arabidopsis arenosa , (2) whether recombination rate correlates with temperature fluctuations in nature, and (3) whether natural temperature fluctuations might cause meiotic aberrations. We found that plants in two genetically distinct populations showed a similar plastic response with recombination rate increases correlated with both high and low temperatures. In addition, increased recombination rate correlated with increased multivalent formation, especially at lower temperature, hinting that polyploids in particular may suffer meiotic problems in conditions they encounter in nature. Our results show that studies of recombination rate plasticity done in laboratory settings inform our understanding of what happens in nature.
The framework and composite map of Daphnia magna. Listed information include the names of RAD markers; marker alignment position to D. magna genome assembly v2.4; marker assignment as a representative of a segregation pattern (“FRAME” marker), significance level of the segregation ratio distortion (SRD) for each marker based on the p-value of Chi-square test for a difference between the observed and the expected Mendelian ratio (p
During my Ph.D., I used the next generation sequencing technology to investigate patterns of recombination and the genetic consequences of different reproductive modes of Daphnia magna. More precisely, I have used Restriction site Associated (RAD) sequencing to construct a high-density genetic map that can be coupled with the draft genome assembly of D. magna, thus, providing an essential tool for genome investigations in this widely used model organism (Chapter I). Such a map has enabled characterization of variation in the meiotic recombination rates across the genome of D. magna for the first time. Since recombination rates are an important parameter in almost any type of genetic research, this newly gained insight into the recombination landscape of D. magna offers a fundamental information for future studies of genome evolution, identification of genes underlying phenotypic traits and population genetic analyses.
In addition to sexual reproduction, D. magna can also reproduce asexually to generate clutches of clonal offspring (ameiotic parthenogenesis). This feature of Daphnia biology is extremely useful for scientific experimentation where the genetic variation among tested individuals has to be minimized. However, over the last decade, reports of genome homogenization (loss of heterozygosity - LOH) in asexual lineages of D. pulex have indicated that asexual genomes are not static as it was previously assumed and that some levels of ameiotic recombination, in addition to mutation, may induce genetic variation among putative clones. However, comparing parthenogenetic offspring with their mothers at several thousand genetic markers generated by RAD-sequencing, I was not able to detect any LOH events in D. magna (Chapter II). I cannot exclude the possibility that ameiotic recombination indeed occurs in D. magna, however, my results indicate that such phenomenon is extremely rare or restricted to the very short genomic regions that I was unable to investigate, despite a high-density of markers used in this study.
Nevertheless, the implementation of RAD-sequencing protocol for the genome studies of D. magna still enables interrogation of the transmission of genetic information from parents to offspring at unprecedented resolution. For an example, a RAD-sequencing based analysis of reduction in parental heterozygosity among rare ephippial hatchlings (typically produced by sexual reproduction) found in non-male producing populations of D. magna, has enabled differentiation between self-fertilization and automixis (meiotic parthenogenesis), by uncovering the subtle differences in genetic consequences of these reproductive strategies (Chapter III). Harnessing the ability of high-resolution genetic analysis it was demonstrated that, in the absence of males, D. magna can produce diapause eggs by automixis, and an additional type of asexual reproduction that was not previously reported for this species.
Finally, RAD-sequencing European populations of D. magna revealed an association of genetic variation with the geographic location of individual samples (Chapter IV), a task which was not previously amenable using mitochondrial or microsatellite markers. This study provided a better insight into population genetic structure of D. magna and suggested that genetic differentiation is mainly driven by geographic distance. These results set a foundation for forthcoming studies aiming to disentangle past and future evolutionary processes shaping populations of this intriguing model organism.
Taken together, research presented in my thesis illustrates the practicality of reduced representation genome sequencing for tackling diverse topics in evolutionary biology. By increasing awareness of non-randomness of meiotic recombination across the genome of D. magna, the diversity of reproductive mechanisms it can employ, and its large-scale population structure, I hope this work will contribute to further understanding of the remarkable adaptive capacity this crustacean is famous for.