In this paper, we study the formalism of unsupervised multi-class domain adaptation (multi-class UDA), which underlies a few recent algorithms whose learning objectives are only motivated empirically. Multi-Class Scoring Disagreement (MCSD) divergence is presented by aggregating the absolute margin violations in multi-class classification, and this proposed MCSD is able to fully characterize the relations between any pair of multi-class scoring hypotheses. By using MCSD as a measure of domain distance, we develop a new domain adaptation bound for multi-class UDA; its data-dependent, probably approximately correct bound is also developed that naturally suggests adversarial learning objectives to align conditional feature distributions across source and target domains. Consequently, an algorithmic framework of Multi-class Domain-adversarial learning Networks (McDalNets) is developed, and its different instantiations via surrogate learning objectives either coincide with or resemble a few recently popular methods, thus (partially) underscoring their practical effectiveness. Based on our identical theory for multi-class UDA, we also introduce a new algorithm of Domain-Symmetric Networks (SymmNets), which is featured by a novel adversarial strategy of domain confusion and discrimination. SymmNets affords simple extensions that work equally well under the problem settings of either closed set, partial, or open set UDA. We conduct careful empirical studies to compare different algorithms of McDalNets and our newly introduced SymmNets. Experiments verify our theoretical analysis and show the efficacy of our proposed SymmNets. In addition, we have made our implementation code publicly available.
Point set is arguably the most direct approximation of an object or scene surface, yet its practical acquisition often suffers from the shortcoming of being noisy, sparse, and possibly incomplete, which restricts its use for a high-quality surface recovery. Point set upsampling aims to increase its density and regularity such that a better surface recovery could be achieved. The problem is severely ill-posed and challenging, considering that the upsampling target itself is only an approximation of the underlying surface. Motivated to improve the surface approximation via point set upsampling, we identify the factors that are critical to the objective, by pairing the surface approximation error bounds of the input and output point sets. It suggests that given a fixed budget of points in the upsampling result, more points should be distributed onto the surface regions where local curvatures are relatively high. To implement the motivation, we propose a novel design of Curvature-ADaptive Point set Upsampling network (CAD-PU), the core of which is a module of curvature-adaptive feature expansion. To train CAD-PU, we follow the same motivation and propose geometrically intuitive surrogates that approximate discrete notions of surface curvature for the upsampled point set. We further integrate the proposed surrogates into an adversarial learning based curvature minimization objective, which gives a practically effective learning of CAD-PU. We conduct thorough experiments that show the efficacy of our contributions and the advantages of our method over existing ones. Our implementation codes are publicly available at https://github.com/JiehongLin/CAD-PU.
Gender is an important cue in social activities. In this correspondence, we present a study and analysis of gender classification based on human gait. Psychological experiments were carried out. These experiments showed that humans can recognize gender based on gait information, and that contributions of different body components vary. The prior knowledge extracted from the psychological experiments can be combined with an automatic method to further improve classification accuracy. The proposed method which combines human knowledge achieves higher performance than some other methods, and is even more accurate than human observers. We also present a numerical analysis of the contributions of different human components, which shows that head and hair, back, chest and thigh are more discriminative than other components. We also did challenging cross-race experiments that used Asian gait data to classify the gender of Europeans, and vice versa. Encouraging results were obtained. All the above prove that gait-based gender classification is feasible in controlled environments. In real applications, it still suffers from many difficulties, such as view variation, clothing and shoes changes, or carrying objects. We analyze the difficulties and suggest some possible solutions.
Given labeled instances on a source domain and unlabeled ones on a target domain, unsupervised domain adaptation aims to learn a task classifier that can well classify target instances. Recent advances rely on domain-adversarial training of deep networks to learn domain-invariant features. However, due to an issue of mode collapse induced by the separate design of task and domain classifiers, these methods are limited in aligning the joint distributions of feature and category across domains. To overcome it, we propose a novel adversarial learning method termed Discriminative Adversarial Domain Adaptation (DADA). Based on an integrated category and domain classifier, DADA has a novel adversarial objective that encourages a mutually inhibitory relation between category and domain predictions for any input instance. We show that under practical conditions, it defines a minimax game that can promote the joint distribution alignment. Except for the traditional closed set domain adaptation, we also extend DADA for extremely challenging problem settings of partial and open set domain adaptation. Experiments show the efficacy of our proposed methods and we achieve the new state of the art for all the three settings on benchmark datasets.
In recent years, underground mining automation (e.g., the heavy-duty robots carrying rock breaker tools for secondary breaking) has drawn substantial interest. This breaking process is needed only when over-sized rocks threaten to jam the mine material flow. In the worst case, a pile of overlapped rocks can get stuck on top of a crusher's grate plate. For a human operator, it is relatively easy to make the decisions about the rock locations in the pile and the order of rocks to be crushed. In an autonomous operation, a robust and fast visual perception system is needed for executing robot motion commands. In this paper, we propose a pipeline for fast detection and pose estimation of individual rocks in cluttered scenes. We employ the state-of-art YOLOv3 as a 2D detector to perform 3D reconstruction from point cloud for detected rocks in 2D regions using our proposed novel method, and finally estimating the rock centroid positions and the normal-to-surface vectors based on the predicted point cloud. The detected centroids in the scene are ordered according to the depth of rock surface to the camera, which provides the breaking sequence of the rocks. During the system evaluation in the real rock breaking experiments, we have collected a new dataset with 4780 images having from 1 to 12 rocks on a grate plate. The proposed pipeline achieves 97.47% precision on overall detection with a real-time speed around 15Hz.
The 3D Gaussian Splatting (3DGS) gained its popularity recently by combining the advantages of both primitive-based and volumetric 3D representations, resulting in improved quality and efficiency for 3D scene rendering. However, 3DGS is not alias-free, and its rendering at varying resolutions could produce severe blurring or jaggies. This is because 3DGS treats each pixel as an isolated, single point rather than as an area, causing insensitivity to changes in the footprints of pixels. Consequently, this discrete sampling scheme inevitably results in aliasing, owing to the restricted sampling bandwidth. In this paper, we derive an analytical solution to address this issue. More specifically, we use a conditioned logistic function as the analytic approximation of the cumulative distribution function (CDF) in a one-dimensional Gaussian signal and calculate the Gaussian integral by subtracting the CDFs. We then introduce this approximation in the two-dimensional pixel shading, and present Analytic-Splatting, which analytically approximates the Gaussian integral within the 2D-pixel window area to better capture the intensity response of each pixel. Moreover, we use the approximated response of the pixel window integral area to participate in the transmittance calculation of volume rendering, making Analytic-Splatting sensitive to the changes in pixel footprint at different resolutions. Experiments on various datasets validate that our approach has better anti-aliasing capability that gives more details and better fidelity.
Multi-view surface reconstruction is an ill-posed, inverse problem in 3D vision research. It involves modeling the geometry and appearance with appropriate surface representations. Most of the existing methods rely either on explicit meshes, using surface rendering of meshes for reconstruction, or on implicit field functions, using volume rendering of the fields for reconstruction. The two types of representations in fact have their respective merits. In this work, we propose a new hybrid representation, termed Sur2f, aiming to better benefit from both representations in a complementary manner. Technically, we learn two parallel streams of an implicit signed distance field and an explicit surrogate surface Sur2f mesh, and unify volume rendering of the implicit signed distance function (SDF) and surface rendering of the surrogate mesh with a shared, neural shader; the unified shading promotes their convergence to the same, underlying surface. We synchronize learning of the surrogate mesh by driving its deformation with functions induced from the implicit SDF. In addition, the synchronized surrogate mesh enables surface-guided volume sampling, which greatly improves the sampling efficiency per ray in volume rendering. We conduct thorough experiments showing that Sur$^2$f outperforms existing reconstruction methods and surface representations, including hybrid ones, in terms of both recovery quality and recovery efficiency.
Zero-shot 6D object pose estimation involves the detection of novel objects with their 6D poses in cluttered scenes, presenting significant challenges for model generalizability. Fortunately, the recent Segment Anything Model (SAM) has showcased remarkable zero-shot transfer performance, which provides a promising solution to tackle this task. Motivated by this, we introduce SAM-6D, a novel framework designed to realize the task through two steps, including instance segmentation and pose estimation. Given the target objects, SAM-6D employs two dedicated sub-networks, namely Instance Segmentation Model (ISM) and Pose Estimation Model (PEM), to perform these steps on cluttered RGB-D images. ISM takes SAM as an advanced starting point to generate all possible object proposals and selectively preserves valid ones through meticulously crafted object matching scores in terms of semantics, appearance and geometry. By treating pose estimation as a partial-to-partial point matching problem, PEM performs a two-stage point matching process featuring a novel design of background tokens to construct dense 3D-3D correspondence, ultimately yielding the pose estimates. Without bells and whistles, SAM-6D outperforms the existing methods on the seven core datasets of the BOP Benchmark for both instance segmentation and pose estimation of novel objects.