Genetic markers identifying women at an increased risk of developing breast cancer exist, yet the majority of inherited risk remains elusive. While numerous BRCA1 coding sequence mutations are associated with breast cancer risk, BRCA1 mutations account for less then 5% of breast cancer risk. Since 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we tested the hypothesis that such polymorphisms in the 3'UTR of BRCA1 and haplotypes containing these functional polymorphisms may be associated with breast cancer risk. We sequenced the BRCA1 3'UTR from breast cancer patients to identify miRNA disrupting polymorphisms. We further evaluated haplotypes of this region including the identified 3'UTR variants in a large population of controls and breast cancer patients (n=221) with known breast cancer subtypes and ethnicities. We identified three 3'UTR variants in BRCA1 that are polymorphic in breast cancer populations, and haplotype analysis including these variants revealed that breast cancer patients harbor five rare haplotypes not generally found among controls (9.50% for breast cancer chromosomes, 0.11% for control chromosomes, p=0.0001). Three of these rare haplotypes contain the rs8176318 BRCA1 3'UTR functional variant. These haplotypes are not biomarkers for BRCA1 coding mutations, as they are found rarely in BRCA1 mutant breast cancer patients (1/129 patients= 0.78%). These rare BRCA1 haplotypes and 3'UTR SNPs may represent new genetic markers of breast cancer risk.
MicroRNAs (miRNAs) are well established as global gene regulators and thus, slight alterations in miRNA levels as well as their ability to regulate their targets may cause important cellular changes leading to cancer risk. 3´ untranslated region (UTR) miRNA binding site single nucleotide polymorphisms (SNPs) have added another layer of possible genetic variation involved in the complex process of oncogenesis. Identifying these key genetically inherited effectors of miRNA functioning has improved our understanding of the complexity of disease. Interest in the field has grown rapidly in only the last 5 years, with several studies reporting on the role of 3´UTR binding site SNPs as genetic markers of increased cancer susceptibility, as well as biomarkers of cancer type, outcome and response to therapy. Currently, there are numerous known miRNA binding site SNPs associated with multiple cancer subtypes.
Ovarian cancer (OC) is the single most deadly form of women's cancer, typically presenting as an advanced disease at diagnosis in part due to a lack of known risk factors or genetic markers of risk. The KRAS oncogene and altered levels of the microRNA (miRNA) let-7 are associated with an increased risk of developing solid tumors. In this study, we investigated a hypothesized association between an increased risk of OC and a variant allele of KRAS at rs61764370, referred to as the KRAS-variant, which disrupts a let-7 miRNA binding site in this oncogene. Specimens obtained were tested for the presence of the KRAS-variant from nonselected OC patients in three independent cohorts, two independent ovarian case-control studies, and OC patients with hereditary breast and ovarian cancer syndrome (HBOC) as well as their family members. Our results indicate that the KRAS-variant is associated with more than 25% of nonselected OC cases. Further, we found that it is a marker for a significant increased risk of developing OC, as confirmed by two independent case-control analyses. Lastly, we determined that the KRAS-variant was present in 61% of HBOC patients without BRCA1 or BRCA2 mutations, previously considered uninformative, as well as in their family members with cancer. Our findings strongly support the hypothesis that the KRAS-variant is a genetic marker for increased risk of developing OC, and they suggest that the KRAS-variant may be a new genetic marker of cancer risk for HBOC families without other known genetic abnormalities.