Abstract The human gut microbiome provides us with functional features that we did not have to evolve ourselves and can be viewed as a structured microbial community that operates like a microbial organ within the human host. A minor but important part of this microbiome is the ability to colonise and thrive within the mucous layer that covers the colon epithelium. These mucosal microbes intimately interact with the intestinal tissue and seem to be important modulators of human health. Embedded in the host-secreted mucous matrix, they form a ‘mucosal biofilm’ with a distinct composition and functionality. In this review, we provide evidence that six specific (micro)environmental factors near the colon mucosa shape and determine mucosal biofilm formation and stability, that is, (1) mucous rigidity, (2) gradients of fluid shear, (3) radial oxygen gradients, (4) secretions of host defense molecules, (5) the presence of a rich but challenging nutrient platform and (6) the presence of niches at the colon epithelial surface. In addition, it appears that microbes actively participate in shaping their mucosal environment. Current insights into the interaction between mucosal microbes and their environment are rather limited, and many questions regarding the contribution of mucosal biofilm functionality and stability to human health remain to be answered. Yet, given the higher potency of mucosal microbes than their luminal counterparts to interact with the host, new insights can accelerate the development of novel disease-preventive or therapeutic strategies.
Abstract This chapter describes in vitro models of the gastrointestinal tract currently used in static and dynamic simulation studies of host-microbial interactions in the digestive tract.
Polyunsaturated fatty acids (PUFAs) may affect colon microbiome homeostasis by exerting (specific) antimicrobial effects and/or interfering with mucosal biofilm formation at the gut mucosal interface. We used standardized batch incubations and the Mucosal-Simulator of the Human Microbial Intestinal Ecosystem (M-SHIME) to show the in vitro luminal and mucosal effects of the main PUFA in the Western diet, linoleic acid (LA). High concentrations of LA were found to decrease butyrate production and Faecalibacterium prausnitzii numbers dependent on LA biohydrogenation to vaccenic acid (VA) and stearic acid (SA). In faecal batch incubations, LA biohydrogenation and butyrate production were positively correlated and SA did not inhibit butyrate production. In the M-SHIME, addition of a mucosal environment stimulated biohydrogenation to SA and protected F. prausnitzii from inhibition by LA. This was probably due to the preference of two biohydrogenating genera Roseburia and Pseudobutyrivibrio for the mucosal niche. Co-culture batch incubations using Roseburia hominis and F. prausnitzii validated these observations. Correlations networks further uncovered the central role of Roseburia and Pseudobutyrivibrio in protecting luminal and mucosal SHIME microbiota from LA-induced stress. Our results confirm how cross-shielding interactions provide resilience to the microbiome and demonstrate the importance of biohydrogenating, mucosal bacteria for recovery from LA stress.
Host mucin is the main constituent of the mucus layer that covers the gut epithelium of the host, and an important source of glycans for the bacteria colonising the intestine. Akkermansia muciniphila is a mucin-degrading bacterium, abundant in the human gut, that is able to produce acetate and propionate during this degradation process. A. muciniphila has been correlated with human health in previous studies, but a mechanistic explanation is lacking. In this study, the main site of colonisation was characterised alongside additional conditions, such as differences in colon pH, prebiotic supplementation and variable mucin supply. To overcome the limitations of in vivo studies concerning variations in mucin availability and difficult access to proximal regions of the colon, a dynamic in vitro gut model (SHIME) was used. In this model, A. muciniphila was found to colonise the distal colon compartment more abundantly than the proximal colon ((±8 log copies/ml compared to ±4 log copies/ml) and the preference for the distal compartment was found to be pH-dependent. The addition of mucin caused a specific increase of A. muciniphila (±4.5 log increase over two days), far exceeding the response of other bacteria present, together with an increase in propionate. These findings suggest that colonisation and mucin degradation by A. muciniphila is dependent on pH and the concentration of mucin. Our results revealed the preference of A. muciniphila for the distal colon environment due to its higher pH and uncovered the quick and stable response of A. muciniphila to mucin supplementation.
Biofilms represent a substantial problem in the food industry, with food spoilage, equipment failure, and public health aspects to consider. Besides, biofilms may be a hot spot for plasmid transfer, by which antibiotic resistance can be disseminated to potential foodborne pathogens. This study investigated biomass and plasmid transfer in dual-species (Pseudomonas putida and Escherichia coli) biofilm models relevant to the food industry. Two different configurations (flow-through and drip-flow) and two different inoculation procedures (donor-recipient and recipient-donor) were tested. The drip-flow configuration integrated stainless steel coupons in the setup while the flow-through configuration included a glass flow cell and silicone tubing. The highest biomass density [10 log (cells cm-²)] was obtained in the silicone tubing when first the recipient strain was inoculated. High plasmid transfer ratios, up to 1/10 (transconjugants/total bacteria), were found. Depending on the order of inoculation, a difference in transfer efficiency between the biofilm models could be found. The ease by which the multiresistance plasmid was transferred highlights the importance of biofilms in the food industry as hot spots for the acquisition of multiresistance plasmids. This can impede the treatment of foodborne illnesses if pathogens acquire this multiresistance in or from the biofilm.