Introduction: Tridymite, cristobalite, and quartz are silica polymorphs, i.e., they share the same chemical formula SiO2 but their crystalline structures differ [1]. On Earth, tridymite is stable as a high-temperature hexagonal phase (870
The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.
Abstract This study utilizes instruments from the Curiosity rover payload to develop an integrated paleoenvironmental and compositional reconstruction for the 65‐m thick interval of stratigraphy comprising the Hartmann's Valley and Karasburg members of the Murray formation, Gale crater, Mars. The stratigraphy consists of cross‐stratified sandstone (Facies 1), planar‐laminated sandstone (Facies 2), and planar‐laminated mudstone (Facies 3). Facies 1 is composed of sandstone showing truncated sets of concave‐curvilinear laminae stacked into cosets. Sets are estimated to be meter‐to sub‐meter‐scale, consistent with low‐height dunes. Thin stratigraphic intervals of Facies 1 and stacking patterns with Facies 2 and 3 support a wet aeolian dune interpretation. Meter‐thick packages of planar‐laminated sandstone (Facies 2) are interpreted to represent interfingering dune‐interdune strata. Facies 3 consists of meter‐thick packages of planar‐laminated mudstone interpreted to represent lacustrine deposition with persistent standing water. Integration of geochemistry with each facies reveals some compositional control based on the depositional process. Models for source rock composition from Alpha Particle X‐Ray Spectrometer measurements show that facies derived from a basaltic source. Alteration indices and geochemical trends provide evidence that moderate chemical weathering occurred before compositional changes due to diagenesis. Differences in wt% FeO (T) and TiO 2 between facies are minimal, though trends point to sediment sorting in transport. Comparisons to terrestrial basaltic sedimentary systems indicate that the Hartmann's Valley and Karasburg facies reflect deposition in an environment where diverse subaqueous and subaerial facies persisted adjacent to a long‐lived body of water.
Abstract Understanding magmatic processes is critical to understanding Mars as a system, but Curiosity's investigation of dominantly sedimentary rocks has made it difficult to constrain igneous processes. Igneous classification of float rocks is challenging because of the following: (1) the possibility that they have been affected by sedimentary processes or weathering, and (2) grain size heterogeneity in the observed rock textures makes the small‐scale compositions measured by rover instruments unreliable for bulk classification. We avoid these ambiguities by using detrital igneous mineral chemistry to constrain models of magmatic processes in the source region for the fluvio‐deltaic Bradbury group. Mineral chemistry is obtained from X‐ray diffraction of three collected samples and a new stoichiometric and visual filtering of ~5,000 laser induced breakdown spectroscopy (LIBS) spots to identify compositions of individual igneous minerals. Observed mineral chemistries are compared to those produced by MELTS thermodynamic modeling to constrain possible magmatic conditions. Fractionation of two starting primary melts derived from different extent of adiabatic decompression melting of a primitive mantle composition could result in the crystallization of all minerals observed. Crystal fractionation of a subalkaline and an alkaline magma is required to form the observed minerals. These results are consistent with the collection of alkaline and subalkaline rocks from Gale as well as clasts from the Martian meteorite Northwest Africa 7034 and paired stones. This new method for constraining magmatic processes will be of significant interest for the Mars 2020 mission, which will also investigate an ancient volcaniclastic‐sedimentary environment and will include a LIBS instrument.