Abstract. Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m−2 and 1263 ± 189 g C m−2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested constant values of 0.47–0.50. Low nitrogen investment in fruits, the limited root-apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.
Abstract. We present a novel high-resolution inverse modelling system (“FLEXVAR”) based on FLEXPART-COSMO back trajectories driven by COSMO meteorological fields at 7 km×7 km resolution over the European COSMO-7 domain and the four-dimensional variational (4DVAR) data assimilation technique. FLEXVAR is coupled offline with the global inverse modelling system TM5-4DVAR to provide background mole fractions (“baselines”) consistent with the global observations assimilated in TM5-4DVAR. We have applied the FLEXVAR system for the inverse modelling of European CH4 emissions in 2018 using 24 stations with in situ measurements, complemented with data from five stations with discrete air sampling (and additional stations outside the European COSMO-7 domain used for the global TM5-4DVAR inversions). The sensitivity of the FLEXVAR inversions to different approaches to calculate the baselines, different parameterizations of the model representation error, different settings of the prior error covariance parameters, different prior inventories, and different observation data sets are investigated in detail. Furthermore, the FLEXVAR inversions are compared to inversions with the FLEXPART extended Kalman filter (“FLExKF”) system and with TM5-4DVAR inversions at 1∘×1∘ resolution over Europe. The three inverse modelling systems show overall good consistency of the major spatial patterns of the derived inversion increments and in general only relatively small differences in the derived annual total emissions of larger country regions. At the same time, the FLEXVAR inversions at 7 km×7 km resolution allow the observations to be better reproduced than the TM5-4DVAR simulations at 1∘×1∘. The three inverse models derive higher annual total CH4 emissions in 2018 for Germany, France, and BENELUX compared to the sum of anthropogenic emissions reported to UNFCCC and natural emissions estimated from the Global Carbon Project CH4 inventory, but the uncertainty ranges of top-down and bottom-up total emission estimates overlap for all three country regions. In contrast, the top-down estimates for the sum of emissions from the UK and Ireland agree relatively well with the total of anthropogenic and natural bottom-up inventories.
Abstract. A substantial portion of tropospheric O3 dry deposition occurs after diffusion of O3 through plant stomata. Simulating stomatal uptake of O3 in 3D atmospheric chemistry models is important in the face of increasing drought induced declines in stomatal conductance and enhanced ambient O3. Here, we present a comparison of the stomatal component of O3 dry deposition (egs) from chemical transport models and estimates of egs from observed CO2, latent heat, and O3 flux. The dry deposition schemes were configured as single-point models forced with data collected at flux towers. We conducted sensitivity analyses to study the impact of model parameters that control stomatal moisture stress on modeled egs. Examining six sites around the northern hemisphere, we find that the seasonality of observed flux-based egs agrees with the seasonality of simulated egs at times during the growing season with disagreements occurring during the later part of the growing season at some sites. We find that modeled water stress effects are too strong in a temperate-boreal transition forest. Some single-point models overestimate summertime egs in a seasonally water-limited Mediterranean shrubland. At all sites examined, modeled egs was sensitive to parameters that control the vapor pressure deficit stress. At specific sites that experienced substantial declines in soil moisture, the simulation of egs was highly sensitive to parameters that control the soil moisture stress. The findings demonstrate the challenges in accurately representing the effects of moisture stress on the stomatal sink of O3 during observed increases in dryness due to ecosystem specific plant-resource interactions.
Abstract. We evaluate the capability of the global atmospheric transport model TM5 to reproduce observations of the boundary layer dynamics and the associated variability of trace gases close to the surface, using radon (222Rn), which is an excellent tracer for vertical mixing owing to its short lifetime (half-life) of 3.82 days. Focusing on the European scale, we compare the boundary layer height (BLH) in the TM5 model with observations from the NOAA Integrated Global Radiosonde Archive (IGRA) and in addition with ceilometer measurements at Cabauw (The Netherlands) and lidar BLH retrievals at Trainou (France). Furthermore, we compare TM5 simulations of 222Rn activity concentrations, using a novel, process-based 222Rn flux map over Europe (Karstens et al., 2015), with quasi-continuous 222Rn measurements from 10 European monitoring stations. The TM5 model reproduces relatively well the daytime BLH (within ~ 10–20 % for most of the stations), except for coastal sites, for which differences are usually larger due to model representation errors. During night, TM5 overestimates the shallow nocturnal BLHs, especially for the very low observed BLHs (< 100 m) during summer. The 222Rn activity concentration simulations based on the new 222Rn flux map show significant improvements especially regarding the average seasonal variability, compared to simulations using constant 222Rn fluxes. Nevertheless, the (relative) differences between simulated and observed daytime minimum 222Rn activity concentrations are larger for several stations (on the order of 50 %) compared to the (relative) differences between simulated and observed BLH at noon. Although the nocturnal BLH is often higher in the model than observed, simulated 222Rn nighttime maxima are larger at several continental stations, which points to potential deficiencies of TM5 to correctly simulate the vertical gradients within the nocturnal boundary layer, limitations of the 222Rn flux map, or issues related to the definition of the nocturnal BLH. At several stations the simulated decrease of 222Rn activity concentrations in the morning is faster than observed. In addition, simulated vertical 222Rn activity concentration gradients at Cabauw decrease faster than observations during the morning transition period, and are in general lower than observed gradients during daytime, which points to too fast vertical mixing in the TM5 boundary layer during daytime. Furthermore, the capability of the TM5 model to simulate the diurnal BLH cycle is limited due to the current coarse temporal resolution (3 hr/6 hr) of the TM5 input meteorology. Additionally, we analyze the impact of a new treatment of convection in TM5, based on the ECMWF reanalysis, leading to overall significantly lower (on the order of ~ 20 %) surface 222Rn activity concentrations during daytime compared to the current default convection scheme based on Tiedtke (1989). However, the performance of the model simulations compared to the 222Rn observations is very similar in terms of root mean square and correlation coefficient for both convection schemes.