To identify the underlying genetic defect in a patient with intellectual disability, seizures, ataxia, macrothrombocytopenia, renal and cardiac involvement, and abnormal protein glycosylation.
Methods:
Genetic studies involved homozygosity mapping by 250K single nucleotide polymorphism array and SLC35A1 sequencing. Functional studies included biochemical assays for N-glycosylation and mucin-type O-glycosylation and SLC35A1-encoded cytidine 5′-monophosphosialic acid (CMP–sialic acid) transport after heterologous expression in yeast.
Results:
We performed biochemical analysis and found combined N- and O-glycosylation abnormalities and specific reduction in sialylation in this patient. Homozygosity mapping revealed homozygosity for the CMP–sialic acid transporter SLC35A1. Mutation analysis identified a homozygous c.303G>C (p.Gln101His) missense mutation that was heterozygous in both parents. Functional analysis of mutant SLC35A1 showed normal Golgi localization but 50% reduction in transport activity of CMP–sialic acid in vitro.
Conclusion:
We confirm an autosomal recessive, generalized sialylation defect due to mutations in SLC35A1. The primary neurologic presentation consisting of ataxia, intellectual disability, and seizures, in combination with bleeding diathesis and proteinuria, is discriminative from a previous case described with deficient sialic acid transporter. Our study underlines the importance of sialylation for normal CNS development and regular organ function.
According to the body's need, water is reabsorbed from the pro-urine that is formed by ultrafiltration in the kidney. This process is regulated by the antidiuretic hormone arginine-vasopressin (AVP), which binds to its type 2 receptor (V2R) in the kidney. Mutations in the gene encoding the V2R often lead to the X-linked inheritable form of nephrogenic diabetes insipidus (NDI), a disorder in which patients are unable to concentrate their urine despite the presence of AVP. Many of these mutations are missense mutations that do not interfere with the intrinsic functionality of V2R, but cause its retention in the endoplasmic reticulum (ER), making it unavailable for AVP binding. Because the current treatments for NDI relieve its symptoms to some extent, but do not cure the disorder, cell-permeable antagonists (pharmacological chaperones) have been successfully used to stabilise the mutant receptors and restore their plasma membrane localisation. Recently, cell-permeable agonists also were shown to rescue ER-retained V2R mutants, leading to increased cAMP levels and translocation of aquaporin-2 to the apical membrane. This makes V2R-specific cell-permeable agonists very promising therapeutics for NDI as a result of misfolded V2R receptors.
Obesity induces macrophages to drive inflammation in adipose tissue, a crucial step towards the development of type 2 diabetes. The tricarboxylic acid (TCA) cycle intermediate succinate is released from cells under metabolic stress and has recently emerged as a metabolic signal induced by proinflammatory stimuli. We therefore investigated whether succinate receptor 1 (SUCNR1) could play a role in the development of adipose tissue inflammation and type 2 diabetes.Succinate levels were determined in human plasma samples from individuals with type 2 diabetes and non-diabetic participants. Succinate release from adipose tissue explants was studied. Sucnr1 -/- and wild-type (WT) littermate mice were fed a high-fat diet (HFD) or low-fat diet (LFD) for 16 weeks. Serum metabolic variables, adipose tissue inflammation, macrophage migration and glucose tolerance were determined.We show that hypoxia and hyperglycaemia independently drive the release of succinate from mouse adipose tissue (17-fold and up to 18-fold, respectively) and that plasma levels of succinate were higher in participants with type 2 diabetes compared with non-diabetic individuals (+53%; p < 0.01). Sucnr1 -/- mice had significantly reduced numbers of macrophages (0.56 ± 0.07 vs 0.92 ± 0.15 F4/80 cells/adipocytes, p < 0.05) and crown-like structures (0.06 ± 0.02 vs 0.14 ± 0.02, CLS/adipocytes p < 0.01) in adipose tissue and significantly improved glucose tolerance (p < 0.001) compared with WT mice fed an HFD, despite similarly increased body weights. Consistently, macrophages from Sucnr1 -/- mice showed reduced chemotaxis towards medium collected from apoptotic and hypoxic adipocytes (-59%; p < 0.05).Our results reveal that activation of SUCNR1 in macrophages is important for both infiltration and inflammation of adipose tissue in obesity, and suggest that SUCNR1 is a promising therapeutic target in obesity-induced type 2 diabetes.The dataset generated and analysed during the current study is available in GEO with the accession number GSE64104, www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64104 .
Mutations in ANKH cause the highly divergent conditions familial chondrocalcinosis and craniometaphyseal dysplasia. The gene product ANK is supposed to regulate tissue mineralization by transporting pyrophosphate to the extracellular space.We evaluated several family members of a large consanguineous family with mental retardation, deafness, and ankylosis. We compared their skeletal, metabolic, and serological parameters to that of the autosomal recessive progressive ankylosis (ank) mouse mutant, caused by a loss-of-function mutation in the murine ortholog Ank.The studied patients had painful small joint soft-tissue calcifications, progressive spondylarthropathy, osteopenia, mild hypophosphatemia, mixed hearing loss, and mental retardation.After mapping the disease gene to 5p15, we identified the novel homozygous ANK missense mutation L244S in all patients. Although L244 is a highly conserved amino acid, the mutated ANK protein was detected at normal levels at the plasma membrane in primary patient fibroblasts. The phenotype was highly congruent with the autosomal recessive progressive ankylosis (ank) mouse mutant. This indicates a loss-of-function effect of the L244S mutation despite normal ANK protein expression. Interestingly, our analyses revealed that the primary step of joint degeneration is fibrosis and mineralization of articular soft tissues. Moreover, heterozygous carriers of the L244S mutation showed mild osteoarthritis without metabolic alterations, pathological calcifications, or central nervous system involvement.Beyond the description of the first human progressive ankylosis phenotype, our results indicate that ANK influences articular soft tissues commonly involved in degenerative joint disorders. Furthermore, this human disorder provides the first direct evidence for a role of ANK in the central nervous system.
In the renal collecting duct, water reabsorption is regulated by the antidiuretic hormone vasopressin (AVP). Binding of this hormone to the vasopressin V2 receptor (V2R) leads to insertion of aquaporin-2 (AQP2) water channels in the apical membrane, thereby allowing water reabsorption from the pro-urine to the interstitium. The disorder nephrogenic diabetes insipidus (NDI) is characterized by the kidney's inability to concentrate pro-urine in response to AVP, which is mostly acquired due to electrolyte disturbances or lithium therapy. Alternatively, NDI is inherited in an X-linked or autosomal fashion due to mutations in the genes encoding V2R or AQP2, respectively. This review describes the current knowledge of the cell biological causes of NDI and how these defects may explain the patients' phenotypes. Also, the increased understanding of these cellular defects in NDI has opened exciting initiatives in the development of novel therapies for NDI, which are extensively discussed in this review.
Background. Arginine vasopressin (AVP) binding to the V2 receptor (V2R) in renal collecting duct principal cells induces a cAMP signalling cascade resulting in the activation of protein kinase A (PKA), translocation of aquaporin-2 (AQP2) to the apical membrane and an increase in AQP2 expression. Consequently, concentration of urine is initiated. X-linked nephrogenic diabetes insipidus (NDI), characterized by the inability to concentrate urine in response to AVP, is caused by mutations in the V2R gene. Initiation of AQP2 translocation, while circumventing the V2R–cAMP–PKA pathway has been suggested as a putative therapy for these patients. In this respect, the activation of a cAMP-independent and cGMP-dependent pathway for AQP2 membrane insertion by different cyclic guanosine monophosphate (cGMP) pathway activators, such as atrial natriuretic peptide (ANP), l -arginine and 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP), has been put forward. However, it is unclear whether they can increase AQP2 expression.