Abstract The MicroBooNE liquid argon time projection chamber (LArTPC) maintains a high level of liquid argon purity through the use of a filtration system that removes electronegative contaminants in continuously-circulated liquid, recondensed boil off, and externally supplied argon gas. We use the MicroBooNE LArTPC to reconstruct MeV-scale radiological decays. Using this technique we measure the liquid argon filtration system's efficacy at removing radon. This is studied by placing a 500 kBq 222 Rn source upstream of the filters and searching for a time-dependent increase in the number of radiological decays in the LArTPC. In the context of two models for radon mitigation via a liquid argon filtration system, a slowing mechanism and a trapping mechanism, MicroBooNE data supports a radon reduction factor of greater than 97% or 99.999%, respectively. Furthermore, a radiological survey of the filters found that the copper-based filter material was the primary medium that removed the 222 Rn. This is the first observation of radon mitigation in liquid argon with a large-scale copper-based filter and could offer a radon mitigation solution for future large LArTPCs.
We report measurements of radon progeny in liquid argon within the MicroBooNE time projection chamber (LArTPC). The presence of specific radon daughters in MicroBooNE’s 85 metric tons of active liquid argon bulk is probed with newly developed charge-based low-energy reconstruction tools and analysis techniques to detect correlated Bi214−Po214 radioactive decays. Special datasets taken during periods of active radon doping enable new demonstrations of the calorimetric capabilities of single-phase neutrino LArTPCs for β and α particles with electron-equivalent energies ranging from 0.1 to 3.0 MeV. By applying Bi214−Po214 detection algorithms to data recorded over a 46-day period, no statistically significant presence of radioactive Bi214 is detected, and a limit on the activity is placed at <0.35mBq/kg at the 95% confidence level. This bulk Bi214 radiopurity limit—the first ever reported for a liquid argon detector incorporating liquid-phase purification—is then further discussed in relation to the targeted upper limit of 1mBq/kg on bulk Rn222 activity for the DUNE neutrino detector. Published by the American Physical Society 2024
MicroBooNE samples are provided for collaborative development in two different formats: HDF5, targeting the broadest audience, and artroot, targeting users that are familiar with the software infrastructure of Fermilab neutrino experiments and more in general of HEP experiments. The HDF5 files are stored on Zenodo, together with a list of artroot files accessible with xrootd. This sample includes simulated interactions of neutrinos from the Booster Neutrino Beam (BNB), overlaid on top of cosmic ray data. The sample is inclusive, i.e. it includes all types of neutrinos and interactions, with relative abundance matching our nominal flux and cross section models. Interactions are simulated in in the whole cryostat volume. The HDF5 files in this sample do not include the information at the wire waveform level ("NoWire" label), allowing for larger number of events to be included in the data set. More documentation, including detailed description of content, recipes, and example usage, at https://github.com/uboone/OpenSamples. Suggested text for acknowledgment is the following: We acknowledge the MicroBooNE Collaboration for making publicly available the data sets [data set DOIs] employed in this work. These data sets consist of simulated neutrino interactions from the Booster Neutrino Beamline overlaid on top of cosmic data collected with the MicroBooNE detector [2017 JINST 12 P02017]. In addition, we request that software products resulting from the usage of the datasets are also made publicly available.
We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved.
MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE's liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combining light signals and reconstructed tracks are applied to achieve a neutrino interaction time resolution of $\mathcal{O}(1\text{ }\text{ }\mathrm{ns})$. The result obtained allows MicroBooNE to access the nanosecond beam structure of the BNB for the first time. The timing resolution achieved will enable significant enhancement of cosmic background rejection for all neutrino analyses. Furthermore, the ns timing resolution opens new avenues to search for long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in future large LArTPC experiments, namely the SBN program and DUNE.
We present the first measurement of the cross section of Cabibbo-suppressed Λ baryon production, using data collected with the MicroBooNE detector when exposed to the neutrinos from the main injector beam at the Fermi National Accelerator Laboratory. The data analyzed correspond to 2.2×10^{20} protons on target running in neutrino mode, and 4.9×10^{20} protons on target running in anti-neutrino mode. An automated selection is combined with hand scanning, with the former identifying five candidate Λ production events when the signal was unblinded, consistent with the GENIE prediction of 5.3±1.1 events. Several scanners were employed, selecting between three and five events, compared with a prediction from a blinded Monte Carlo simulation study of 3.7±1.0 events. Restricting the phase space to only include Λ baryons that decay above MicroBooNE's detection thresholds, we obtain a flux averaged cross section of 2.0_{-1.7}^{+2.2}×10^{-40} cm^{2}/Ar, where statistical and systematic uncertainties are combined.
MicroBooNE samples are provided for collaborative development in two different formats: HDF5, targeting the broadest audience, and artroot, targeting users that are familiar with the software infrastructure of Fermilab neutrino experiments and more in general of HEP experiments. The HDF5 files are stored on Zenodo, together with a list of artroot files accessible with xrootd. This sample includes simulated interactions of neutrinos from the Booster Neutrino Beam (BNB), overlaid on top of cosmic ray data. The sample is inclusive, i.e. it includes all types of neutrinos and interactions, with relative abundance matching our nominal flux and cross section models. Interactions are simulated in in the whole cryostat volume. The HDF5 files in this sample include the information at the wire waveform level (after deconvolution and finding of regions of interest). As this information significantly increases the file size, this sample contains about 17% of the events of the corresponding sample without wire information. More documentation, including detailed description of content, recipes, and example usage, at https://github.com/uboone/OpenSamples. Suggested text for acknowledgment is the following: We acknowledge the MicroBooNE Collaboration for making publicly available the data sets [data set DOIs] employed in this work. These data sets consist of simulated neutrino interactions from the Booster Neutrino Beamline overlaid on top of cosmic data collected with the MicroBooNE detector [2017 JINST 12 P02017]. In addition, we request that software products resulting from the usage of the datasets are also made publicly available.
Abstract Primary challenges for current and future precision neutrino experiments using liquid argon time projection chambers (LArTPCs) include understanding detector effects and quantifying the associated systematic uncertainties. This paper presents a novel technique for assessing and propagating LArTPC detector-related systematic uncertainties. The technique makes modifications to simulation waveforms based on a parameterization of observed differences in ionization signals from the TPC between data and simulation, while remaining insensitive to the details of the detector model. The modifications are then used to quantify the systematic differences in low- and high-level reconstructed quantities. This approach could be applied to future LArTPC detectors, such as those used in SBN and DUNE.
We report results from a search for neutrino-induced neutral current (NC) resonant $\Delta$(1232) baryon production followed by $\Delta$ radiative decay, with a $\langle0.8\rangle$~GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80$\times$10$^{20}$ protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state ($1\gamma1p$ and $1\gamma0p$, respectively). The background is constrained via an in-situ high-purity measurement of NC $\pi^0$ events, made possible via dedicated $2\gamma1p$ and $2\gamma0p$ selections. A total of 16 and 153 events are observed for the $1\gamma1p$ and $1\gamma0p$ selections, respectively, compared to a constrained background prediction of $20.5 \pm 3.65 \text{(sys.)} $ and $145.1 \pm 13.8 \text{(sys.)} $ events. The data lead to a bound on an anomalous enhancement of the normalization of NC $\Delta$ radiative decay of less than $2.3$ times the predicted nominal rate for this process at the 90% confidence level (CL). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of $3.18$ times the nominal NC $\Delta$ radiative decay rate at the 94.8% CL, in favor of the nominal prediction, and represents a greater than $50$-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range
We present a search for eV-scale sterile neutrino oscillations in the MicroBooNE liquid argon detector, simultaneously considering all possible appearance and disappearance effects within the 3+1 active-to-sterile neutrino oscillation framework. We analyze the neutrino candidate events for the recent measurements of charged-current ν_{e} and ν_{μ} interactions in the MicroBooNE detector, using data corresponding to an exposure of 6.37×10^{20} protons on target from the Fermilab booster neutrino beam. We observe no evidence of light sterile neutrino oscillations and derive exclusion contours at the 95% confidence level in the plane of the mass-squared splitting Δm_{41}^{2} and the sterile neutrino mixing angles θ_{μe} and θ_{ee}, excluding part of the parameter space allowed by experimental anomalies. Cancellation of ν_{e} appearance and ν_{e} disappearance effects due to the full 3+1 treatment of the analysis leads to a degeneracy when determining the oscillation parameters, which is discussed in this Letter and will be addressed by future analyses.