Molecular classification of high-grade serous ovarian cancer (HGSOC) using transcriptional profiling has proven to be complex and difficult to validate across studies. We determined gene expression profiles of 174 well-annotated HGSOCs and demonstrate prognostic significance of the prespecified TCGA Network gene signatures. Furthermore, we confirm the presence of four HGSOC transcriptional subtypes using a de novo classification. Survival differed statistically significantly between de novo subtypes (log rank, P = .006) and was the best for the immunoreactive-like subtype, but statistically significantly worse for the proliferative- or mesenchymal-like subtypes (adjusted hazard ratio = 1.89, 95% confidence interval = 1.18 to 3.02, P = .008, and adjusted hazard ratio = 2.45, 95% confidence interval = 1.43 to 4.18, P = .001, respectively). More prognostic information was provided by the de novo than the TCGA classification (Likelihood Ratio tests, P = .003 and P = .04, respectively). All statistical tests were two-sided. These findings were replicated in an external data set of 185 HGSOCs and confirm the presence of four prognostically relevant molecular subtypes that have the potential to guide therapy decisions.
<p>Table S1 has RTqPCR primers and probe information. Table S2 has clinical information for the Dutch cohort. Table S3 has a summary of TCGA samples used in our analyses. Figure S1 has RTqPCR assay validation data. Figure S2 shows clinical correlations of APOBEC3G expression in independent cohorts.</p>
<p>Supplementary methods and figures. Fig. 1:TIDCs obtained from the ascites from ovarian cancer patients express PD-1 mRNA. Fig. 2: TIDCs obtained from the ascites of ID8 tumor bearing mice express PD-1 mRNA.</p>
ObjectiveTo evaluate myeloid differentiation primary response gene 88 (MyD88) and Toll-like receptor 4 (TLR4) expression in relation to clinical features of epithelial ovarian cancer, histologic subtypes, and overall survival.Patients and MethodsWe conducted centralized immunohistochemical staining, semi-quantitative scoring, and survival analysis in 5263 patients participating in the Ovarian Tumor Tissue Analysis consortium. Patients were diagnosed between January 1, 1978, and December 31, 2014, including 2865 high-grade serous ovarian carcinomas (HGSOCs), with more than 12,000 person-years of follow-up time. Tissue microarrays were stained for MyD88 and TLR4, and staining intensity was classified using a 2-tiered system for each marker (weak vs strong).ResultsExpression of MyD88 and TLR4 was similar in all histotypes except clear cell ovarian cancer, which showed reduced expression compared with other histotypes (P<.001 for both). In HGSOC, strong MyD88 expression was modestly associated with shortened overall survival (hazard ratio [HR], 1.13; 95% CI, 1.01-1.26; P=.04) but was also associated with advanced stage (P<.001). The expression of TLR4 was not associated with survival. In low-grade serous ovarian cancer (LGSOC), strong expression of both MyD88 and TLR4 was associated with favorable survival (HR [95% CI], 0.49 [0.29-0.84] and 0.44 [0.21-0.89], respectively; P=.009 and P=.02, respectively).ConclusionResults are consistent with an association between strong MyD88 staining and advanced stage and poorer survival in HGSOC and demonstrate correlation between strong MyD88 and TLR4 staining and improved survival in LGSOC, highlighting the biological differences between the 2 serous histotypes.
Genome-wide interrogation of DNA methylation (DNAm) in blood-derived leukocytes has become feasible with the advent of CpG genotyping arrays. In epithelial ovarian cancer (EOC), one report found substantial DNAm differences between cases and controls; however, many of these disease-associated CpGs were attributed to differences in white blood cell type distributions. We examined blood-based DNAm in 336 EOC cases and 398 controls; we included only high-quality CpG loci that did not show evidence of association with white blood cell type distributions to evaluate association with case status and overall survival. Of 13,816 CpGs, no significant associations were observed with survival, although eight CpGs associated with survival at p < 10-3, including methylation within a CpG island located in the promoter region of GABRE (p = 5.38 x 10-5, HR = 0.95). In contrast, 53 CpG methylation sites were significantly associated with EOC risk (p <5 x10-6). The top association was observed for the methylation probe cg04834572 located approximately 315 kb upstream of DUSP13 (p = 1.6 x10-14). Other disease-associated CpGs included those near or within HHIP (cg14580567; p =5.6x10-11), HDAC3 (cg10414058; p = 6.3x10-12), and SCR (cg05498681; p = 4.8x10-7). We have identified several CpGs in leukocytes that are differentially methylated by case-control status. Since a retrospective study design was used, we cannot differentiate whether DNAm was etiologic or resulting from EOC; thus, prospective studies of EOC-associated loci are the critical next step.