Thrombogenicity is the predominant obstacle to successful implantation of decellularized spleen matrix (DSM). The aim of this study was to construct a transplantable functional bioartificial liver (BAL) with the use of DSM. This was achieved by layer-by-layer electrostatic immobilization technique by using poly dimethyl diallyl ammonium chloride and heparin. After heparin immobilization, DSM gradually turned from translucent into completely opaque milky white. Toluidine blue staining showed strong positive staining of the entire coated DSM. In vitro diluted blood perfusion test showed that the splenic arterial pressure of the heparin-coated DSM was much lower than that of the non-coated DSM (p < 0.01). Then, we heterotopically transplanted the modified DSM into rat hepatic injury model for 6 h to evaluate the hemocompatibility in vivo. Overall, HE staining and vWF immunohistochemistry all confirmed that heparin-coated DSM has a satisfactory anticoagulant effect. Based on the heparin-coated DSM, BALs were built with the use of rat primary hepatocytes. Our results demonstrate that these heparin-coated BALs satisfied anticoagulant effects even after 6 h. Immunofluorescence of ALB and G6PC also showed that hepatocytes in heparin-coated BAL have significantly higher cell viability and function than the non-coated group. However, serum analysis did not indicate a significant difference between the two groups but a slight trend of improvement with respect to serum albumin (p = 0.156) and aspartate transaminase (p = 0.140). In conclusion, we demonstrated that the BAL constructed by heparin-coated DSM can exert satisfactory short-term anticoagulant effects and can compensate for a certain degree of liver function.
To explore the optimal implantation strategy of tissue-engineered liver (TEL) constructed based on decellularized spleen matrix (DSM) in rats.DSM was prepared by freeze-thawing and perfusion with sodium dodecyl sulfate (SDS) of the spleen of healthy SD rats. Primary rat hepatocytes isolated using modified Seglen 2-step perfusion method were implanted into the DSM to construct the TEL. The advantages and disadvantages were evaluated of 4 transplant strategies of the TEL, namely ectopic vascular anastomosis, liver cross-section suture transplantation, intrahepatic insertion and mesenteric transplantation.The planting rate of hepatocytes in the DSM was (74.5∓7.7)%. HE staining and scanning electron microscopy showed satisfactory cell status, and immunofluorescence staining confirmed the normal expression of ALB and G6Pc in the cells. For TEL implantation, ectopic vascular anastomosis was difficult and resulted in a mortality rate of 33.3% perioperatively and massive thrombus formation in the matrix within 6 h. Hepatic cross-section suture failed to rapidly establish sufficient blood supply, and no viable graft was observed 3 days after the operation. With intrahepatic insertion method, the hepatocytes in the DSM could survive as long as 14 days. Mesenteric transplantation resulted in a hepatocyte survival rate of (38.3+7.1)% at 14 days after implantation.TEL constructed based on DSM can perform liver-specific functions with a good cytological bioactivity. Mesenteric transplantation of the TEL, which is simple, safe and effective, is currently the optimal transplantation strategy.
Background and Aims: Decellularized liver matrix (DLM) hold great potential for reconstructing functional hepatic-like tissue (HLT) based on reseeding of hepatocytes or stem cells, but the shortage of liver donors is still an obstacle for potential application. Therefore, an appropriate alternative scaffold is needed to expand the donor pool. In this study, we explored the effectiveness of decellularized spleen matrix (DSM) for culturing of bone marrow mesenchymal stem cells (BMSCs), and promoting differentiation into hepatic-like cells.Methods: Rats' spleen were harvested for DSM preparation by freezing/thawing and perfusion procedure. Then the mesenchymal stem cells derived from rat bone marrow were reseeded into DSM for dynamic culture and hepatic differentiation by a defined induction protocol.Results: The research found that DSM preserved a 3-dimensional porous architecture, with native extracellular matrix and vascular network which was similar to DLM. The reseeded BMSCs in DSM differentiated into functional hepatocyte-like cells, evidenced by cytomorphology change, expression of hepatic-associated genes and protein markers, glycogen storage, and indocyanine green uptake. The albumin production (2.74±0.42 vs. 2.07±0.28 pg/cell/day) and urea concentration (75.92±15.64 vs. 52.07±11.46 pg/cell/day) in DSM group were remarkably higher than tissue culture flasks (TCF) group over the same differentiation period, P< 0.05.Conclusion: This present study demonstrated that DSM might have considerable potential in fabricating hepatic-like tissue, particularly because it can facilitate hepatic differentiation of BMSCs which exhibited higher level and more stable functions.
Background and Aims: Using decellularized scaffold to reengineer liver tissue is a promising alternative therapy for end-stage liver diseases. Though the decellularized human liver matrix is the ideal scaffold for reconstruction of the liver theoretically, the shortage of liver donors is still an obstacle for potential clinical application. Therefore, an appropriate alternative scaffold is needed. In the present study, we used a tissue engineering approach to prepare a rat decellularized spleen matrix (DSM) and evaluate the effectiveness of this DSM for primary rat hepatocytes culture. Methods: Rat decellularized spleen matrix (DSM) was prepared by perfusion of a series of detergents through spleen vasculature. DSM was characterized by residual DNA and specific extracellular matrix distribution. Thereafter, primary rat hepatocytes were cultured in the DSM in a 3-dimensional dynamic culture system, and liver cell survival and biological functions were evaluated by comparison with 3-dimensional sandwich culture and also with cultured in decellularized liver matrix (DLM). Results: Our research found that DSM did not exhibit any cellular components, but preserved the main extracellular matrix and the intact vasculature evaluated by DNA detection, histology, immunohistochemical staining, vessel corrosion cast and upright metallurgical microscope. Moreover, the method of DSM preparation procedure was relatively simple with high success rate (100%). After seeding primary hepatocytes in DSM, the cultured hepatocytes survived inside DSM with albumin synthesis and urea secretion within 10 d. Additionally, hepatocytes in dynamic culture medium had better biological functions at day 10 than that in sandwich culture. Albumin synthesis was 85.67 ± 6.34 μg/107cell/24h in dynamic culture in DSM compared to 62.43 ± 4.59 μg/107cell/24h in sandwich culture (P < 0.01) and to 87.54 ± 5.25 μg/107cell/24h in DLM culture (P > 0.05); urea release was 32.14 ± 8.62 μg/107cell/24h in dynamic culture in DSM compared to 20.47 ± 4.98 μg/107 cell/24h in sandwich culture (P < 0.05) and to 37.38 ± 7.29 μg/107cell/24h cultured in DLM (P > 0.05). Conclusion: The present study demonstrates that DSM can be prepared successfully using a tissue engineering approach. The DSM is an appropriate scaffold for primary hepatocytes culture.
Abstract The aim of this study was to analyze the role of blood biomarkers regarding preoperative inflammation and coagulation in predicting the postoperative in-hospital mortality of patients with type A acute aortic dissection (AAD). A total of 206 patients with type A AAD who had received surgical treatment were enrolled in this study. Patients were divided into two groups: the death group (28 patients who died during hospitalization) and the survival group (178 patients). Peripheral blood samples were collected before anesthesia induction. Preoperative levels of D-dimer, fibrinogen (FIB), platelet (PLT), white blood cells (WBC) and neutrophil (NEU) were compared between the two groups. Univariable and multivariable logistic regression analysis were utilized to identify the independent risk factors for postoperative in-hospital deaths of patients with type A AAD. Receiver operating characteristic (ROC) curve were used to analyze the predictive value of these indices in the postoperative in-hospital mortality of the patients. Univariable logistic regression analysis showed that the P values of the five parameters including D-dimer, FIB, PLT, WBC and NEU were all less than 0.1, which may be risk factors for postoperative in-hospital deaths of patients with type A AAD. Further multivariable logistic regression analysis indicated that higher preoperative D-dimer and WBC levels were independent risk factors for postoperative in-hospital mortality of patients with type A AAD. ROC curve analysis indicated that application of combining FIB and PLT could improve accuracy in prediction of postoperative in-hospital mortality in patients with type A AAD. Both preoperative D-dimer and WBC in patients with type A AAD may be used as independent risk factors for the postoperative in-hospital mortality of such patients. The combination of FIB and PLT may improve the accuracy of clinical prognostic assessment.
Background: Cardiac surgery and coronary examination, such as invasive coronary angiography (CAG), are both possibly associated with acute kidney injury (AKI). Preoperative CAG examination and cardiac surgery within a short interval may increase the incidence of AKI. Methods: We retrospectively reviewed 1112 patients who underwent CAG examination within 30 days prior to the cardiac operation in this study. Postoperative AKI was defined, according to Kidney Disease Improving Global Outcomes Definition and Staging (KDIGO) criteria. Results: The total incidence of AKI was 40.8% and cystatin C level was 1.260 (1.028, 1.672) mg/L. For patients who received CAG, age, body mass index, cardiopulmonary time, and the time interval between preoperative CAG examination and cardiac operation within 48h was shown to be independent predictors of postoperative AKI. The incidence of AKI in patients undergoing preoperative CAG within 48h was 11.2% higher than in those more than 48h (P < 0.001). Patients undergoing valve surgery with or without coronary artery bypass grafting (CABG) exhibited a higher AKI risk than those only accepting CABG. The in-hospital stay of patients who developed AKI was 2 days longer than those without AKI. However, undergoing CAG within 48h prior to cardiac operation did not prolong ICU length of stay or hospital length of stay, nor did it increase the risk of death or renal failure after an operation. Conclusion: Undergoing CAG within 48 hours before cardiac surgery increases the risk of postoperative AKI.
To optimize the protocols for isolation, in vitro culture, identification and induction of hepatic differentiation of rat bone marrow mesenchymal stem cells (BMSCs).Rat BMSCs were separated and purified by differential adherent culture for 1.5 h with the first medium change at 12 h. The surface markers of BMSCs were detected by flow cytometry. The cells were induced to differentiate into adipogenic, osteogenic, and chondrogenesis lineages. A 3-step protocol including sequential addition of growth factors, cytokines and hormones was used to induce the BMSCs to differentiate into hepatocyte-like cells.The cells isolated using this protocol were positive for CD29, CD44, and CD90 and negative for CD29 and CD45. The adipogenic, osteogenic, and chondrogenic differentiation of the BMSCs were verified by Oil red, Alizarin red, and toluidine blue staining. The BMSCs induced with the 3-step protocol differentiated into hepatic-like cells that expressed hepatocyte-specific proteins (ALB and AFP) and genes.The optimized protocol allows simple and efficient isolation of highly purified populations of BMSCs, which can be induced into hepatic lineages in specific microenvironment.
Helicenes exhibit promise as active layer materials for circularly polarized light (CPL) detectors due to their strong chiroptical activity. However, their practical application is limited by the complicated synthesis and loosely solid-state packing. This study introduces a chiral induction strategy towards the synthesis of helicene derivatives, chiral tetrachlorinated diperylene diimides ((
To address the problem of thrombosis, anticoagulant coatings have been developed for extracorporeal membrane oxygenation circuits. This article reviews commercial and novel anticoagulant coatings recently and proposes a new classification of them.