Background: Football has the highest number of nontraumatic fatalities of any sport in the United States. Purpose: To compare the incidence of nontraumatic fatalities with that of traumatic fatalities, describe the epidemiology of nontraumatic fatalities in high school (HS) and college football players, and determine the effectiveness of National Collegiate Athletic Association (NCAA) policies to reduce exertional heat stroke (EHS) and exertional sickling (ES) with sickle cell trait (SCT) fatalities in athletes. Study Design: Descriptive epidemiology study. Methods: We retrospectively reviewed 20 academic years (1998-2018) of HS and college nontraumatic fatalities in football players using the National Registry of Catastrophic Sports Injuries (NRCSI). EHS and ES with SCT fatality rates were compared before and after the implementation of the NCAA football out-of-season model (bylaw 17.10.2.4 [2003]) and NCAA Division I SCT screening (bylaw 17.1.5.1 [2010]), respectively. Additionally, we compiled incidence trends for HS and college traumatic and nontraumatic fatalities in football players for the years 1960 through 2018 based on NRCSI data and previously published reports. Results: The risk (odds ratio) of traumatic fatalities in football players in the 2010s was 0.19 (95% CI, 0.13-0.26; P < .0001) lower in HS and 0.29 (95% CI, 0.29-0.72; P = .0078) lower in college compared with that in the 1960s. In contrast, the risk of nontraumatic fatalities in football players in the 2010s was 0.7 (95% CI, 0.50-0.98; P = .0353) in HS and 0.9 (95% CI, 0.46-1.72; P = .7413) in college compared with that in the 1960s. Since 2000, the risk of nontraumatic fatalities has been 1.89 (95% CI, 1.42-2.51; P < .001) and 4.22 (95% CI, 2.04-8.73; P < .001) higher than the risk of traumatic fatalities at the HS and college levels, respectively. During the 20 years studied, there were 187 nontraumatic fatalities (average, 9.4 per year). The causes of death were sudden cardiac arrest (57.7%), EHS (23.6%), ES with SCT (12.1%), asthma (4.9%), and hyponatremia (1.6%). The risk of a nontraumatic fatality was 4.1 (95% CI, 2.8-5.9; P < .0001) higher in NCAA compared with HS athletes. There was no difference in the risk of an EHS fatality in NCAA athletes (0.86 [95% CI, 0.17-4.25]; P = .85) after implementation in 2003 of the NCAA football out-of-season model. The risk of an ES with SCT fatality in Division I athletes was significantly lower after the 2010 NCAA SCT screening bylaw was implemented (0.12 [95% CI, 0.02-0.95]; P = .04). Conclusion: Since the 1960s, the risk of nontraumatic fatalities has declined minimally compared with the reduction in the risk of traumatic fatalities. Current HS and college nontraumatic fatality rates are significantly higher than rates of traumatic fatalities. The 2003 NCAA out-of-season model has failed to significantly reduce EHS fatalities. The 2010 NCAA SCT screening bylaw has effectively prevented ES with SCT fatalities in NCAA Division I football.
The Second Safety in College Football Summit resulted in interassociation consensus recommendations for three paramount safety issues in collegiate athletics: (1) independent medical care for collegiate athletes; (2) diagnosis and management of sport-related concussion; and (3) year-round football practice contact for collegiate athletes. This document, the fourth arising from the 2016 event, addresses the prevention of catastrophic injury, including traumatic and non-traumatic death, in collegiate athletes. The final recommendations in this document are the result of presentations and discussions on key items that occurred at the summit. After those presentations and discussions, endorsing organisation representatives agreed on 18 foundational statements that became the basis for this consensus paper that has been subsequently reviewed by relevant stakeholders and endorsing organisations. This is the final endorsed document for preventing catastrophic injury and death in collegiate athletes. This document is divided into the following components. (1) Background-this section provides an overview of catastrophic injury and death in collegiate athletes. (2) Interassociation recommendations: preventing catastrophic injury and death in collegiate athletes-this section provides the final recommendations of the medical organisations for preventing catastrophic injuries in collegiate athletes. (3) Interassociation recommendations: checklist-this section provides a checklist for each member school. The checklist statements stem from foundational statements voted on by representatives of medical organisations during the summit, and they serve as the primary vehicle for each member school to implement the prevention recommendations. (4) References-this section provides the relevant references for this document. (5) Appendices-this section lists the foundational statements, agenda, summit attendees and medical organisations that endorsed this document.
The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging of materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason,more » T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear materials. With TREX it is possible to use NRF to provide high spatial resolution (micron scale) images of the isotopic distribution of all materials in a given object. Because of the high energy of the photons, imaging through dense and/or thick objects is possible. This technology will have applicability in many arenas including the survey of cargo for the presence of clandestine nuclear materials. It is also possible to address the more general radiographic challenge of imaging low-density objects that are shielded or placed behind high density objects. In this case, it is the NRF cross section and not the electron density of the material that provides contrast. Extensions of T-REX technology will be dependent upon the evolution of short pulse laser technology to high average powers. Concepts for sources that would produce 10's of kWs of gamma-rays by utilizing MW-class average-power, diode-pumped, short pulse lasers and energy recovery LINAC technology have been developed.« less
A discussion of a paper with the aforementioned title by Anderson and Sitar, published in this journal (Volume 121, Number 7, July 1995), is presented. Discusser Day presents four issues that are important to the analysis of rainfall-induced debris flows: 1) selection of shear strength parameters; 2) effect of roots on the initiation of drained slope failure; 3) distinction between drained and undrained values of residual strength; and 4) effect of permeability on debris flow mobilization. Discussion is followed by closure from the authors.
The Umpqua River drains 12,103 km2 of western Oregon, heading in the Cascade Range and draining portions of the Klamath Mountains and Coast Range before entering the Pacific Ocean. Above the head of tide, the Umpqua River, along with its major tributaries, the North and South Umpqua Rivers, flows on a mixed bedrock and alluvium bed, alternating between bedrock rapids and intermittent, shallow gravel bars composed of gravel to cobble-sized clasts. These bars have been a source of commercial aggregate since the mid-twentieth century. Below the head of tide, the Umpqua River contains large bars composed of mud and sand.Motivated by ongoing permitting and aquatic habitat concerns related to instream gravel mining on the fluvial reaches, this study evaluated spatial and temporal trends in channel change and bed-material transport for 350 km of river channel along the Umpqua, North Umpqua, and South Umpqua Rivers. The assessment produced (1) detailed mapping of the active channel, using aerial photographs and repeat surveys and (2) a quantitative estimation of bed-material flux that drew upon detailed measurements of particle size and lithology, equations of transport capacity, and a sediment yield analysis.Bed-material transport capacity estimates at 45 sites throughout the South Umpqua and mainstem Umpqua Rivers for the period 1951–2008 result in wide-ranging transport capacity estimates, reflecting the difficulty of applying equations of bed-material transport to a supply-limited river. Median transport capacity values calculated from surface-based equations of bedload transport for each of the study reaches provide indications of maximum possible transport rates and range from 8,000 to 27,000 metric tons/yr for the South Umpqua River and 20,000 to 82,000 metric tons/yr for the mainstem Umpqua River upstream of the head of tide; the North Umpqua River probably contributes little bed material. A plausible range of average annual transport rates for the South and mainstem Umpqua Rivers, based on bedload transport capacity estimates for bars with reasonable values for reference shear stress, is between 500 and 20,000 metric tons/yr.An empirical bed-material yield analysis predicts 20,000–50,000 metric tons/yr on the South Umpqua River and mainstem Umpqua River through the Coast Range, decreasing to approximately 30,000 metric tons/yr at the head of tide. Surveys of individual mining sites in the South Umpqua River indicate minimum local bed-material flux rates that are typically less than 10,000 metric tons/yr but that range up to 30,600 metric tons/yr in high-flow years.On the basis of all of these analyses, actual bedload flux in most years is probably less than 25,000 metric tons/yr in the South Umpqua River and Umpqua Rivers, with the North Umpqua River probably contributing negligible amounts. For comparison, the estimated annual volume of commercial gravel extraction from the South Umpqua River between 2001 and 2004 ranged from 610 to 36,570 metric tons, indicating that historical instream gravel extraction may have been a substantial fraction of the overall bedload flux.