Abstract Background Tocilizumab blocks pro-inflammatory activity of interleukin-6 (IL-6), involved in pathogenesis of pneumonia the most frequent cause of death in COVID-19 patients. Methods A multicenter, single-arm, hypothesis-driven trial was planned, according to a phase 2 design, to study the effect of tocilizumab on lethality rates at 14 and 30 days (co-primary endpoints, a priori expected rates being 20 and 35%, respectively). A further prospective cohort of patients, consecutively enrolled after the first cohort was accomplished, was used as a secondary validation dataset. The two cohorts were evaluated jointly in an exploratory multivariable logistic regression model to assess prognostic variables on survival. Results In the primary intention-to-treat (ITT) phase 2 population, 180/301 (59.8%) subjects received tocilizumab, and 67 deaths were observed overall. Lethality rates were equal to 18.4% (97.5% CI: 13.6–24.0, P = 0.52) and 22.4% (97.5% CI: 17.2–28.3, P < 0.001) at 14 and 30 days, respectively. Lethality rates were lower in the validation dataset, that included 920 patients. No signal of specific drug toxicity was reported. In the exploratory multivariable logistic regression analysis, older age and lower PaO2/FiO2 ratio negatively affected survival, while the concurrent use of steroids was associated with greater survival. A statistically significant interaction was found between tocilizumab and respiratory support, suggesting that tocilizumab might be more effective in patients not requiring mechanical respiratory support at baseline. Conclusions Tocilizumab reduced lethality rate at 30 days compared with null hypothesis, without significant toxicity. Possibly, this effect could be limited to patients not requiring mechanical respiratory support at baseline. Registration EudraCT (2020-001110-38); clinicaltrials.gov (NCT04317092).
Pandemic influenza virus has been implicated in serious lower airways illness and death in subjects both with and without underlying medical conditions. Predictive factors for severe disease in healthy individuals have not been identified.Severe A(H1N1)-associated pneumonia occurring in a healthy subject without underlying medical conditions sequential to a Clamidophila pneumoniae infection, is reported.A potential synergistic mechanism by which other pathogens could interfere with the clinical course of A(H1N1) infection, is suggested.
Highly active antiretroviral therapy (HAART therapy) for HIV-1 infection has significantly increased the survival and quality of life of patients with this disease. However, in several epidemiological studies the onset of metabolic syndrome is a phenomenon reported to be extremely frequent. In the present study, genes involved in the molecular cascade responsible for the alteration of fat tissue and of lipid and glucose metabolism in patients with HIV-1 infection treated with antiretroviral therapy were identified. Towards this goal, hybridization using Atlas cDNA Expression Arrays allowed simultaneous monitoring of the expression levels of approximately 250 genes and identification of a panel of changes in relation to different therapeutic groups and in the presence of metabolic syndrome, with some genes being up-regulated, while others are down-regulated in the different subgroups of patients. The results of this analysis have shown a panel of transcriptional changes associated with oxidative stress mechanisms that provide a basis for further studies on understanding of mechanisms that, in vivo, are the foundation the metabolic disorders in patients with HIV infection.
Background: A novel coronavirus named SARS-CoV-2 diagnosed in China in December 2019 is rapidly spreading through Europe and US Computed Tomography emerged as
Systemic vascular damage with micro/macro-thrombosis is a typical feature of severe COVID-19. However, the pathogenesis of this damage and its predictive biomarkers remain poorly defined. For this reason, in this study, serum monocyte chemotactic protein (MCP)-2 and P- and E-selectin levels were analyzed in 204 patients with COVID-19. Serum MCP-2 and P-selectin were significantly higher in hospitalized patients compared with asymptomatic patients. Furthermore, MCP-2 increased with the WHO stage in hospitalized patients. After 1 week of hospitalization, MCP-2 levels were significantly reduced, while P-selectin increased in patients in WHO stage 3 and decreased in patients in WHO stages 5-7. Serum E-selectin was not significantly different between asymptomatic and hospitalized patients. The lower MCP-2 levels after 1 week suggest that endothelial damage triggered by monocytes occurs early in COVID-19 disease progression. MCP-2 may also predict COVID-19 severity. The increase in P-selectin levels, which further increased in mild patients and reduced in severe patients after 1 week of hospitalization, suggests that the inactive form of the protein produced by the cleavage of the active protein from the platelet membrane is present. This may be used to identify a subset of patients that would benefit from targeted therapies. The unchanged levels of E-selectin in these patients suggest that endothelial damage is less relevant.
Acute kidney disease and chronic kidney disease are considered conditions that can increase the mortality and severity of COVID-19. However, few studies have investigated the impact of creatinine levels on COVID-19 progression in patients without a history of chronic kidney disease. The aim of the study was to assess the impact of creatinine levels at hospital admission on COVID-19 progression and mortality.We performed a multicenter, observational, retrospective study involving seventeen COVID-19 Units in the Campania region in southern Italy. All adult (≥18 years) patients, hospitalized with a diagnosis of SARS-CoV-2 infection confirmed by a positive reverse transcriptase-polymerase chain reaction on a naso-oropharyngeal swab, from 28 February 2020 to 31 May 2021, were enrolled in the CoviCamp cohort.Evaluating inclusion/exclusion criteria, 1357 patients were included. Considering in-hospital mortality and creatinine value at admission, the best cut-off point to discriminate a death during hospitalization was 1.115 mg/dL. The logistic regression demonstrated that factors independently associated with mortality were age (OR 1.082, CI: 1.054-1.110), Charlson Comorbidity Index (CCI) (OR 1.341, CI: 1.178-1.526), and an abnormal creatinine value at admission, defined as equal to or above 1.12 mg/dL (OR 2.233, CI: 1.373-3.634).In conclusion, our study is in line with previous studies confirming that the creatinine serum level can predict mortality in COVID-19 patients and defining that the best cut-off of the creatinine serum level at admission to predict mortality was 1.12 mg/dL.