Azobenzenearsonate-specific cloned mouse T cells able to transfer delayed hypersensitivity reactions in vivo produced macrophage agglutination factor (MaggF) after stimulation with mitogen or antigen in vitro. Mitogen (Con A) elicited MAggF production directly from T cells. Responses to Ag were Ag-specific, required syngeneic accessory cells in addition to T cells, and were independent of T cell fine specificity for azobenzenearsonate. Mouse MAggF shared a number of biochemical and immunochemical properties with the fibronectins (FN): 1) high Mr similar to that of plasma FN; 2) binding to gelatin, heparin, and polyclonal antibodies and mAb specific for cellular and plasma FN; 3) inhibition of activity in solution by monoclonal anti-human FN directed against plasma FN gelatin-binding domain; and 4) action on peritoneal exudate macrophages mediated through a FN-receptor cross reactive with one on human monocytes. MAggF production required active protein synthesis and was associated with significant increases in gelatin-binding immunoreactive FN (Mr 440 kDa on immunoblotting) in culture supernatants and T cell lysates. Metabolically labeled peptides could be precipitated by anti-FN from culture supernatants of activated T cells. Stimulated cultures contained significantly more cells with immunohistologically demonstrable cytoplasmic FN than unstimulated control cultures. We suggest that T cell FN is a distinct species of cellular FN which may play an important role in mediating delayed hypersensitivity inflammatory reactions in vivo.
Fibroblasts can exert tension on a surrounding substratum. Collagen lattices provide a model system for studying extracellular matrix-cell interactions that may be important in tension generation by fibroblasts. Fibroblasts cultured in an attached collagen lattice will develop tension, which results in rapid lattice retraction upon mechanical release from the underlying substratum. Thus, the cells must generate contractile force and transmit it to the surrounding matrix. Actin microfilament bundles present in fibroblasts may generate the contractile force responsible for the generation of tension. The transmission of force to the surrounding matrix could occur through a specialized transmembrane association linking actin microfilaments and fibronectin fibrils, termed the fibronexus. In this study we used the high-voltage electron microscope to examine in three-dimensions the extracellular matrix-cell contacts present at the surfaces of fibroblasts exerting tension onto the collagen lattice.
The ability to regulate wound contraction is critical for wound healing as well as for pathological contractures. Matrix metalloproteinases (MMPs) have been demonstrated to be obligatory for normal wound healing. This study examined the effect that the broad-spectrum MMP inhibitor BB-94 has when applied topically to full-thickness skin excisional wounds in rats and its ability to inhibit the promotion of myofibroblast formation and function by the latent transforming-growth factor-β1 (TGF-β1). BB-94 delayed wound contraction, as well as all other associated aspects of wound healing examined, including myofibroblast formation, stromal cell proliferation, blood vessel formation, and epithelial wound coverage. Interestingly, BB-94 dramatically increased the level of latent and active MMP-9. The increased levels of active MMP-9 may eventually overcome the ability of BB-94 to inhibit this MMP and may explain why wound contraction and other associated events of wound healing were only delayed and not completely inhibited. BB-94 was also found to inhibit the ability of latent TGF-β1 to promote the formation and function of myofibroblasts. These results suggest that BB-94 could delay wound closure through a twofold mechanism; by blocking keratinocyte migration and thereby blocking the necessary keratinocyte–fibroblast interactions needed for myofibroblast formation and by inhibiting the activation of latent TGF-β1.
To evaluate whether α-smooth muscle actin (α-SMA) plays a role in fibroblast contractility, we first compared the contractile activity of rat subcutaneous fibroblasts (SCFs), expressing low levels of α-SMA, with that of lung fibroblasts (LFs), expressing high levels of α-SMA, with the use of silicone substrates of different stiffness degrees. On medium stiffness substrates the percentage of cells producing wrinkles was similar to that of α-SMA–positive cells in each fibroblast population. On high stiffness substrates, wrinkle production was limited to a subpopulation of LFs very positive for α-SMA. In a second approach, we measured the isotonic contraction of SCF- and LF-populated attached collagen lattices. SCFs exhibited 41% diameter reduction compared with 63% by LFs. TGFβ1 increased α-SMA expression and lattice contraction by SCFs to the levels of LFs; TGFβ-antagonizing agents reduced α-SMA expression and lattice contraction by LFs to the level of SCFs. Finally, 3T3 fibroblasts transiently or permanently transfected with α-SMA cDNA exhibited a significantly higher lattice contraction compared with wild-type 3T3 fibroblasts or to fibroblasts transfected with α-cardiac and β- or γ-cytoplasmic actin. This took place in the absence of any change in smooth muscle or nonmuscle myosin heavy-chain expression. Our results indicate that an increased α-SMA expression is sufficient to enhance fibroblast contractile activity.