Abstract In tomato (Lycopersicon esculentum L. cv Trust Fl), effects of various nutrient treatments on growth, fruit yield and quality, nutrient uptake and accumulation were studied in a hydroponic system. Reductions of macronutrient concentrations to 50% (0.5 × C) or 25% (0.25 × C) of the control (C) levels as well as cessation of replenishment of the feed solution for the last 16 days after 7 months growth at control levels, had no adverse effect on growth, fruit yield and fruit quality. However, reduction of macronutrient concentration to 10% of control (0.1 × C) reduced fruit yield by ‐30%. Steady‐state influx and net flux of NO3 ‐ into the roots of 4–6 week‐old seedlings had not acclimated and showed concentration dependence from 1.1 mM (0.1 × C) to 11 mM (C). Whereas, Pi and K+ fluxes were similar at 0.5 × C and C levels, at 0.1 × C they were significantly lower than the fluxes at higher concentrations, showing lack of acclimation at this concentration. This lack of flux acclimation may account for the adverse effects of low concentration (0.1 × C) on yield. The results have been discussed in the context of eutrophication and it is suggested that in a non‐recirculating hydroponic system, NO3 ‐, Pi, and K+ levels can be reduced to 25% of the concentrations currently being used in commercial greenhouses (C). In a recirculating system, the crop may be grown at control levels and used to deplete the feed solution for ∼3 weeks prior to release of the solution to the drain.
Futile plasma membrane cycling of ammonium (NH4+) is characteristic of low-affinity NH4+ transport, and has been proposed to be a critical factor in NH4+ toxicity. Using unidirectional flux analysis with the positron-emitting tracer 13N in intact seedlings of barley (Hordeum vulgare L.), it is shown that rapid, futile NH4+ cycling is alleviated by elevated K+ supply, and that low-affinity NH4+ transport is mediated by a K+-sensitive component, and by a second component that is independent of K+. At low external [K+] (0.1 mM), NH4+ influx (at an external [NH4+] of 10 mM) of 92 μmol g−1 h−1 was observed, with an efflux:influx ratio of 0.75, indicative of rapid, futile NH4+ cycling. Elevating K+ supply into the low-affinity K+ transport range (1.5–40 mM) reduced both influx and efflux of NH4+ by as much as 75%, and substantially reduced the efflux:influx ratio. The reduction of NH4+ fluxes was achieved rapidly upon exposure to elevated K+, within 1 min for influx and within 5 min for efflux. The channel inhibitor La3+ decreased high-capacity NH4+ influx only at low K+ concentrations, suggesting that the K+-sensitive component of NH4+ influx may be mediated by non-selective cation channels. Using respiratory measurements and current models of ion flux energetics, the energy cost of concomitant NH4+ and K+ transport at the root plasma membrane, and its consequences for plant growth are discussed. The study presents the first demonstration of the parallel operation of K+-sensitive and -insensitive NH4+ flux mechanisms in plants.
Abstract The role of potassium (K+) transporters in high- and low-affinity K+ uptake was examined in roots of intact barley (Hordeum vulgare) and Arabidopsis (Arabidopsis thaliana) plants by use of 42K radiotracing, electrophysiology, pharmacology, and mutant analysis. Comparisons were made between results from barley and five genotypes of Arabidopsis, including single and double knockout mutants for the high-affinity transporter, AtHAK5, and the Shaker-type channel, AtAKT1. In Arabidopsis, steady-state K+ influx at low external K+ concentration ([K+]ext = 22.5 µm) was predominantly mediated by AtAKT1 when high-affinity transport was inhibited by ammonium, whereas in barley, by contrast, K+ channels could not operate below 100 µm. Withdrawal of ammonium resulted in an immediate and dramatic stimulation of K+ influx in barley, indicating a shift from active to passive K+ uptake at low [K+]ext and yielding fluxes as high as 36 µmol g (root fresh weight)−1 h−1 at 5 mm [K+]ext, among the highest transporter-mediated K+ fluxes hitherto reported. This ammonium-withdrawal effect was also established in all Arabidopsis lines (the wild types, atakt1, athak5, and athak5 atakt1) at low [K+]ext, revealing the concerted involvement of several transport systems. The ammonium-withdrawal effect coincided with a suppression of K+ efflux and a significant hyperpolarization of the plasma membrane in all genotypes except athak5 atakt1, could be sustained over 24 h, and resulted in increased tissue K+ accumulation. We discuss key differences and similarities in K+ acquisition between two important model systems and reveal novel aspects of K+ transport in planta.
Plants can utilize two major forms of inorganic N: NO3− (nitrate) and NH4+ (ammonium). In some cases, the preference of one form over another (denoted as β) can appear to be quite pronounced for a plant species, and can be an important determinant and predictor of its distribution and interactions with other species. In many other cases, however, assignment of preference is not so straightforward and must take into account a wide array of complex physiological and environmental features, which interact in ways that are still not well understood. This Viewpoint presents a discussion of the key, and often co-occurring, factors that join to produce the complex phenotypic composite referred to by the deceptively simple term 'N-source preference'. N-source preference is much more complex a biological phenomenon than is often assumed, and general models predicting how it will influence ecological processes will need to be much more sophisticated than those that have been so far developed.
Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K(+)) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world's most important and salt-sensitive crop species. Using efflux analysis with (42)K, coupled with growth and tissue K(+) analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K(+) set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K(+) release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K(+) status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na(+) accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K(+) efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K(+) status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na(+) accumulation is the key factor in performance decline on NaCl stress.