Biofabrication has proved to be a versatile and valuable tool for tissue engineering and cancer research in order to mimic different tumor microenvironments. In the present study, four different cell lines, including two melanoma cell lines, Mel Im and Mel Wei, and two breast cancer cell lines, MDA-MB-231 and MCF-7, were tested in combination with four hydrogels. The hydrogels were a composite ink consisting of alginate, hyaluronic acid and gelatine (Alg/HA/Gel), pre-crosslinked oxidized alginate with gelatine (ADA-GEL), alginate with methyl cellulose (Meth-Alg) and acrylated hyaluronic acid (HAA). Rheological analysis and shear stress calculations, printability assays and dynamic mechanical analysis were performed on all the hydrogels. The cell lines were then mixed into the hydrogels, printed and examined over a period of 14 days. The focus was on cell survival in the gel, metabolic activity and cell cycle analysis using FUCCI reporters. The results showed that all hydrogels were well printable and Meth-Alg was the softest gel. The cell lines survived the printing process in all inks, but there were significant differences in the metabolic activity and the predominant cell cycle stage. In Alg/HA/Gel, the cells grew in spheroid colonies. ADA-GEL proved to be a good bioink for all cell lines, which enabled proliferation, migration and supported the metabolic activity of the cells, while Meth-Alg offered pores for spreading and proliferating cells. However, it was shown that HAA resulted in the lowest cell number and metabolic activity for all cell lines due to its high polymer content, leading in senescence. Our data demonstrated that depending on the hypothesis, all inks are valuable approaches for breast cancer and melanoma models.
Axial vascularization represents a mandatory requirement for clinically applied larger scale vascularized bone grafts. The aim of this study was to combine the arteriovenous (AV) loop model in the rat with a critically sized femoral bone defect and to successfully transplant axially vascularized bone constructs into the defect.In Groups A and C, an AV loop together with a clinically approved hydroxyapatite and beta-tricalcium phosphate (HA/β-TCP) matrix, mesenchymal stem cells, and recombinant human bone morphogenetic protein 2 were implanted into a newly designed porous titanium chamber with an integrated osteosynthesis plate in the thighs of rats, whereas in Groups B and D, the same matrix composition without AV loop and, in Group E, only the HA/β-TCP matrix were implanted. After 6 weeks, the constructs were transplanted into a 10 mm femoral defect created in the same leg, in Groups A and C, under preservation of the AV loop pedicle. Group F served as a control group with an empty chamber. Ten days (Groups A and B) and 12 weeks (Groups C-F) after transplantation, the femora together with the constructs were explanted and investigated using computed tomography (CT), micro-CT, X-ray, histology, and real-time polymerase chain reaction (RT-PCR).Ten days after transplantation, Group A showed a maintained vascular supply leading to increased vascularization, cell survival in the scaffold center, and bone generation compared to Group B. After 12 weeks, there was no difference detectable among all groups regarding total vessel number, although Group C, using the AV loop, still showed increased vascularization of the construct center compared to Groups D and E. In Group C, there was still enhanced bone generation detectable compared to the other groups and increased bony fusion rate at the proximal femoral stump.This study shows the combination of the AV loop model in the rat with a critically sized femoral defect. By maintenance of the vascular supply, the constructs initially showed increased vascularization, leading to increased bone formation and bony fusion in the long term.
Volumetric muscle loss caused by trauma or after tumour surgery exceeds the natural regeneration capacity of skeletal muscle. Hence, the future goal of tissue engineering (TE) is the replacement and repair of lost muscle tissue by newly generating skeletal muscle combining different cell sources, such as myoblasts and mesenchymal stem cells (MSCs), within a three-dimensional matrix. Latest research showed that seeding skeletal muscle cells on aligned constructs enhance the formation of myotubes as well as cell alignment and may provide a further step towards the clinical application of engineered skeletal muscle. In this study the myogenic differentiation potential of MSCs upon co-cultivation with myoblasts and under stimulation with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) was evaluated. We further analysed the behaviour of MSC-myoblast co-cultures in different 3D matrices. Primary rat myoblasts and rat MSCs were mono- and co-cultivated for 2, 7 or 14 days. The effect of different concentrations of HGF and IGF-1 alone, as well as in combination, on myogenic differentiation was analysed using microscopy, multicolour flow cytometry and real-time PCR. Furthermore, the influence of different three-dimensional culture models, such as fibrin, fibrin-collagen-I gels and parallel aligned electrospun poly-ε-caprolacton collagen-I nanofibers, on myogenic differentiation was analysed. MSCs could be successfully differentiated into the myogenic lineage both in mono- and in co-cultures independent of HGF and IGF-1 stimulation by expressing desmin, myocyte enhancer factor 2, myosin heavy chain 2 and alpha-sarcomeric actinin. An increased expression of different myogenic key markers could be observed under HGF and IGF-1 stimulation. Even though, stimulation with HGF/IGF-1 does not seem essential for sufficient myogenic differentiation. Three-dimensional cultivation in fibrin-collagen-I gels induced higher levels of myogenic differentiation compared with two-dimensional experiments. Cultivation on poly-ε-caprolacton-collagen-I nanofibers induced parallel alignment of cells and positive expression of desmin. In this study, we were able to myogenically differentiate MSC upon mono- and co-cultivation with myoblasts. The addition of HGF/IGF-1 might not be essential for achieving successful myogenic differentiation. Furthermore, with the development of a biocompatible nanofiber scaffold we established the basis for further experiments aiming at the generation of functional muscle tissue.
Decellularizing solid organs is a promising top-down process to produce acellular bio-scaffolds for 'de novo' regrowth or application as tissue 'patches' that compensate, e.g., large volumetric muscle loss in reconstructive surgery. Therefore, generating standardized acellular muscle scaffolds marks a pressing area of need. Although animal muscle decellularization protocols were established, those are mostly manually performed and lack defined bioreactor environments and metrologies to assess decellularization quality in real-time. To close this gap, we engineered an automated bioreactor system to provide chemical decellularization solutions to immersed whole rat gastrocnemius medialis muscle through perfusion of the main feeding arteries.Perfusion control is adjustable according to decellularization quality feedback. This was assessed both from (i) ex situ assessment of sarcomeres/nuclei through multiphoton fluorescence and label-free Second Harmonic Generation microscopy and DNA quantification, along with (ii) in situ within the bioreactor environment assessment of the sample's passive mechanical elasticity.We find DNA and sarcomere-free constructs after 72 h of 0.1% SDS perfusion-decellularization. Furthermore, passive elasticity can be implemented as additional online decellularization quality measure, noting a threefold elasticity decrease in acellular constructs.Our MyoBio represents a novel and useful automated bioreactor environment for standardized and controlled generation of acellular whole muscle scaffolds as a valuable source for regenerative medicine.
The engineering of vascular grafts is a growing field in regenerative medicine. Although numerous attempts have been made, the current vascular grafts made of polyurethane (PU), Dacron®, or Teflon® still display unsatisfying results. Electrospinning of biopolymers and native proteins has been in the focus of research to imitate the extracellular matrix (ECM) of vessels to produce a small caliber, off-the-shelf tissue engineered vascular graft (TEVG) as a substitute for poorly performing PU, Dacron, or Teflon prostheses. Blended poly- ε -caprolactone (PCL)/collagen grafts have shown promising results regarding biomechanical and cell supporting features. In order to find a suitable PCL/collagen blend, we fabricated plane electrospun PCL scaffolds using various collagen type I concentrations ranging from 5% to 75%. We analyzed biocompatibility and morphological aspects in vitro . Our results show beneficial features of collagen I integration regarding cell viability and functionality, but also adverse effects like the loss of a confluent monolayer at high concentrations of collagen. Furthermore, electrospun PCL scaffolds containing 25% collagen I seem to be ideal for engineering vascular grafts.
Abstract Background In this study, we evaluate the value of novel suture material based on monofilamentous-extruded polyfluoroethylene (PTFE) compared to polypropylene (PPL) and Fiberwire (FW). Materials and methods 60 flexor tendons were harvested from fresh cadaveric upper extremities. 4–0 sutures strands were used in the PPL, FW and PTFE group. Knotting properties and mechanical characteristics of the suture materials were evaluated. A 4-strand locked cruciate (Adelaide) or a 6-strand (M-Tang) suture technique was applied as core sutures for a tendon repair. Two-way ANOVA tests were performed with the Bonferroni correction. Results Stable knotting was achieved with 5 throws with the PPL material, 7 throws for FW and 9 throws for PTFE. In the PPL group, linear tensile strength was 45.92 ± 12.53 N, in the FW group 80.11 ± 18.34 N and in the PTFE group 76.16 ± 29.10 N. FW and PTFE are significantly stronger than PPL but show no significant difference among each other. Similar results were obtained in the subgroup comparisons for different repair techniques. The Adelaide and the M-Tang knotting technique showed no significant difference. Conclusion Fiberwire showed superior handling and knotting properties in comparison to PTFE. However, PTFE allows easier approximation of the stumps. In both, M-Tang and Adelaide repairs, PTFE was equal to FW in terms of repair strength. Both PTFE and FW provide for a robust tendon repair so that early active motion regimens for rehabilitation can be applied.