Though competitive analysis is often a very good tool for the analysis of online algorithms, sometimes it does not give any insight and sometimes it gives counter-intuitive results. Much work has gone into exploring other performance measures, in particular targeted at what seems to be the core problem with competitive analysis: the comparison of the performance of an online algorithm is made to a too powerful adversary. We consider a new approach to restricting the power of the adversary, by requiring that when judging a given online algorithm, the optimal offline algorithm must perform as well as the online algorithm, not just on the entire final request sequence, but also on any prefix of that sequence. This is limiting the adversary's usual advantage of being able to exploit that it knows the sequence is continuing beyond the current request. Through a collection of online problems, including machine scheduling, bin packing, dual bin packing, and seat reservation, we investigate the significance of this particular offline advantage.
When designing a preemptive online algorithm for the maximum matching problem, we wish to maintain a valid matching M while edges of the underlying graph are presented one after the other. When presented with an edge e, the algorithm should decide whether to augment the matching M by adding e (in which case e may be removed later on) or to keep M in its current form without adding e (in which case e is lost for good). The objective is to eventually hold a matching M with maximum weight. The main contribution of this paper is to establish new lower and upper bounds on the competitive ratio achievable by preemptive online algorithms: 1. We provide a lower bound of 1+ln 2~1.693 on the competitive ratio of any randomized algorithm for the maximum cardinality matching problem, thus improving on the currently best known bound of e/(e-1)~1.581 due to Karp, Vazirani, and Vazirani [STOC'90]. 2. We devise a randomized algorithm that achieves an expected competitive ratio of 5.356 for maximum weight matching. This finding demonstrates the power of randomization in this context, showing how to beat the tight bound of 3 +2\sqrt{2}~5.828 for deterministic algorithms, obtained by combining the 5.828 upper bound of McGregor [APPROX'05] and the recent 5.828 lower bound of Varadaraja [ICALP'11].
Abstract Motivated by designing observational studies using matching methods subject to fine balance constraints, we introduce a new optimization problem. This problem consists of two phases. In the first phase, the goal is to cluster the values of a continuous covariate into a limited number of intervals. In the second phase, we find the optimal matching subject to fine balance constraints with respect to the new covariate we obtained in the first phase. We show that the resulting optimization problem is NP-hard. However, it admits an FPT algorithm with respect to a natural parameter. This FPT algorithm also translates into a polynomial time algorithm for the most natural special cases of the problem.