Abstract The Gram-negative pathogen Pseudomonas aeruginosa is a common cause of pneumonia in hospitalized patients. Its increasing antibiotic resistance and widespread occurrence present a pressing need for vaccines. We previously showed that a P. aeruginosa type III secretion system protein, PopB elicits a strong Th17 response in mice after intranasal (IN) immunization and confers antibody-independent protection against pneumonia in mice. In the current study, we evaluated the immunogenicity and protective efficacy in mice of the combination of PopB (purified with its chaperone protein PcrH) and OprF/I, an outer membrane hybrid fusion protein, compared to immunization with the proteins individually either by the intranasal (IN) or subcutaneous (SC) routes. Our results show that after vaccination, a Th17 recall response from splenocytes was detected only in mice vaccinated with PopB/PcrH, either alone or in combination with OprF/I. Mice that were immunized with the combination of PopB/PcrH and OprF/I had enhanced protection in an acute lethal P. aeruginosa pneumonia model, regardless of vaccine route, compared to the mice vaccinated the with either alone or adjuvant control. Immunization generated IgG titers against the vaccine proteins and whole P. aeruginosa cells. Interestingly, none of these antisera had opsonophagocytic killing activity, but antisera from mice immunized with vaccines containing OprF/I had the ability to block IFN-γ binding to OprF/I, a known virulence mechanism. Hence, vaccines combining PopB/PcrH with OprF/I that elicit functional antibodies lead to a broadly and potently protective vaccine against P. aeruginosa pulmonary infections.
Volatile anesthetics have been in clinical use for a long period of time and are considered to be promiscuous by presumably interacting with several ion channels in the central nervous system to produce anesthesia. Because ion channels and their existing evolutionary analogues, ion transporters, are very important in various organisms, it is possible that volatile anesthetics may affect some bacteria. In this study, we hypothesized that volatile anesthetics could affect bacterial behaviors. We evaluated the impact of anesthetics on bacterial growth, motility (swimming and gliding) and biofilm formation of four common bacterial pathogens in vitro. We found that commonly used volatile anesthetics isoflurane and sevoflurane affected bacterial motility and biofilm formation without any effect on growth of the common bacterial pathogens studied here. Using available Escherichia coli gene deletion mutants of ion transporters and in silico molecular docking, we suggested that these altered behaviors might be at least partly via the interaction of volatile anesthetics with ion transporters.
Infections caused by members of the Burkholderia cepacia complex (BCC) are a serious concern for patients with cystic fibrosis (CF) as these bacteria are often resistant to many antibiotics. During long-term infection of CF patients with BCC, mutations in genes encoding the FixLJ system often become prevalent, suggesting that these changes may benefit the bacteria during infection.
Bacteria evolving within human hosts encounter selective tradeoffs that render mutations adaptive in one context and deleterious in another. Here, we report that the cystic fibrosis-associated pathogen
Burkholderia dolosa is a member of the Burkholderia cepacia complex (BCC), which is a group of bacteria that cause chronic lung infection in patients with cystic fibrosis (CF) and can be associated with outbreaks carrying high morbidity and mortality. While investigating the genomic diversity of B. dolosa strains collected from an outbreak among CF patients, we previously identified fixL as a gene showing signs of strong positive selection. This gene has homology to fixL of the rhizobial FixL/FixJ two-component system. The goals of this study were to determine the functions of FixLJ and their role in virulence in B. dolosa. We generated a fixLJ deletion mutant and complemented controls in B. dolosa strain AU0158. Using a fixK-lacZ reporter we found that FixLJ was activated in low oxygen in multiple BCC species. In a murine pneumonia model, the B. dolosa fixLJ deletion mutant was cleared faster from the lungs and spleen than wild-type B. dolosa strain AU0158 at 7 days post infection. Interestingly, the fixLJ deletion mutant made more biofilm, albeit with altered structure, but was less motile than strain AU0158. Using RNA-seq with in vitro grown bacteria, we found ~11% of the genome was differentially expressed in the fixLJ deletion mutant relative to strain AU0158. Multiple flagella-associated genes were down-regulated in the fixLJ deletion mutant, so we also evaluated virulence of a fliC deletion mutant, which lacks a flagellum. We saw no difference in the ability of the fliC deletion mutant to persist in the murine model relative to strain AU0158, suggesting factors other than flagella caused the phenotype of decreased persistence. We found the fixLJ deletion mutant to be less invasive in human lung epithelial and macrophage-like cells. In conclusion, B. dolosa fixLJ is a global regulator that controls biofilm formation, motility, intracellular invasion/persistence, and virulence.
Sepsis continues to result in high morbidity and mortality. General anesthesia is often administered to septic patients, but the impacts of general anesthesia on host defense are not well understood. General anesthesia can be given by volatile and intravenous anesthetics. Our previous in vitro study showed that volatile anesthetic isoflurane directly inhibits leukocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1), critical adhesion molecules on leukocytes. Thus, the role of isoflurane exposure on in vivo LFA-1 and Mac-1 function was examined using polymicrobial abdominal sepsis model in mice. As a comparison, intravenous anesthetic propofol was given to a group of mice. Wild type, LFA-1, Mac-1, and adhesion molecule-1 knockout mice were used. Following the induction of polymicrobial abdominal sepsis by cecal ligation and puncture, groups of mice were exposed to isoflurane for either 2 or 6 h, or to propofol for 6 h, and their outcomes were examined. Bacterial loads in tissues and blood, neutrophil recruitment to the peritoneal cavity and phagocytosis were studied. Six hours of isoflurane exposure worsened the outcome of abdominal sepsis (P < .0001) with higher bacterial loads in tissues, but 2 h of isoflurane or 6 h of propofol exposure did not. Isoflurane impaired neutrophil recruitment to the abdominal cavity by inhibiting LFA-1 function. Isoflurane also impaired bacterial phagocytosis via complement receptors including Mac-1. In conclusion, prolonged isoflurane exposure worsened the outcome of experimental polymicrobial abdominal sepsis and was associated with impaired neutrophil recruitment and bacterial phagocytosis via reduced LFA-1 and Mac-1 function.
Staphylococcus aureus initiates infections and produces virulence factors, including superantigens (SAgs), at mucosal surfaces. The SAg, Toxic Shock Syndrome Toxin-1 (TSST-1) induces cytokine secretion from epithelial cells, antigen presenting cells (APCs) and T lymphocytes, and causes toxic shock syndrome (TSS). This study investigated the mechanism of TSST-1-induced secretion of proinflammatory cytokines from human vaginal epithelial cells (HVECs) and determined if curcumin, an anti-inflammatory agent, could reduce TSST-1-mediated pathology in a rabbit vaginal model of TSS. TSST-1 caused a significant increase in NF-κB-dependent transcription in HVECs that was associated with increased expression of TNF- α, MIP-3α, IL-6 and IL-8. Curcumin, an antagonist of NF-κB-dependent transcription, inhibited IL-8 production from ex vivo porcine vaginal explants at nontoxic doses. In a rabbit model of TSS, co-administration of curcumin with TSST-1 intravaginally reduced lethality by 60% relative to 100% lethality in rabbits receiving TSST-1 alone. In addition, TNF-α was undetectable from serum or vaginal tissue of curcumin treated rabbits that survived. These data suggest that the inflammatory response induced at the mucosal surface by TSST-1 is NF-κB dependent. In addition, the ability of curcumin to prevent TSS in vivo by co-administration with TSST-1 intravaginally suggests that the vaginal mucosal proinflammatory response to TSST-1 is important in the progression of mTSS.
Burkholderia dolosa caused an outbreak in the cystic fibrosis clinic at Boston Children's Hospital and was associated with high mortality in these patients. This species is part of a larger complex of opportunistic pathogens known as the Burkholderia cepacia complex (Bcc). Compared to other species in the Bcc, B. dolosa is highly transmissible; thus understanding its virulence mechanisms is important for preventing future outbreaks. The genome of one of the outbreak strains, AU0158, revealed a homolog of the lafA gene encoding a putative lateral flagellin, which, in other non-Bcc species, is used for movement on solid surfaces, attachment to host cells, or movement inside host cells. Here, we analyzed the conservation of the lafA gene and protein sequences, which are distinct from those of the polar flagella, and found lafA homologs to be present in numerous β-proteobacteria but notably absent from most other Bcc species. A lafA deletion mutant in B. dolosa showed a greater swimming motility than wild-type due to an increase in the number of polar flagella, but did not appear to contribute to biofilm formation, host cell invasion, or murine lung colonization or persistence over time. However, the lafA gene was important for cytokine production in human peripheral blood mononuclear cells, suggesting it may have a role in recognition by the human immune response.