Allogeneic stem cell transplantation (alloSCT) provides a curative treatment option for hematological malignancies. After HLA-matched alloSCT, donor-derived T cells recognize minor histocompatibility antigens (MiHAs), which are polymorphic peptides presented by HLA on patient cells. MiHAs are absent on donor cells due to genetic differences between patient and donor. T cells targeting broadly expressed MiHAs induce graft-versus-leukemia (GvL) reactivity as well as graft-versus-host disease (GvHD), while T cells for MiHAs with restricted or preferential expression on hematopoietic or non-hematopoietic cells may skew responses toward GvL or GvHD, respectively. Besides tissue expression, overall strength of GvL and GvHD is also determined by T-cell frequencies against MiHAs. Here, we explored the use of DNA barcode-labeled peptide-MHC multimers to detect and monitor antigen-specific T cells for the recently expanded repertoire of HLA-I-restricted MiHAs. In 16 patients who experienced an immune response after donor lymphocyte infusion, variable T-cell frequencies up to 30.5% of CD8 + T cells were measured for 49 MiHAs. High T-cell frequencies above 1% were measured in 12 patients for 19 MiHAs, with the majority directed against mismatched MiHAs, typically 6–8 weeks after donor lymphocyte infusion and at the onset of GvHD. The 12 patients included 9 of 10 patients with severe GvHD, 2 of 3 patients with limited GvHD and 1 of 3 patients without GvHD. In conclusion, we demonstrated that barcoded peptide-MHC multimers reliably detect and allow monitoring for MiHA-specific T cells during treatment to investigate the kinetics of immune responses and their impact on development of GvL and GvHD after HLA-matched alloSCT.
Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.
In the current era of T cell–based immunotherapies, it is crucial to understand which types of MHC-presented T cell antigens are produced by tumor cells. In addition to linear peptide antigens, chimeric peptides are generated through proteasome-catalyzed peptide splicing (PCPS). Whether such spliced peptides are abundantly presented by MHC is highly disputed because of disagreement in computational analyses of mass spectrometry data of MHC-eluted peptides. Moreover, such mass spectrometric analyses cannot elucidate how much spliced peptides contribute to the pool of immunogenic antigens. In this Perspective, we explain the significance of knowing the contribution of spliced peptides for accurate analyses of peptidomes on one hand, and to serve as a potential source of targetable tumor antigens on the other hand. Toward a strategy for mass spectrometry independent estimation of the contribution of PCPS to the immunopeptidome, we first reviewed methodologies to identify MHC-presented spliced peptide antigens expressed by tumors. Data from these identifications allowed us to compile three independent datasets containing 103, 74, and 83 confirmed T cell antigens from cancer patients. Only 3.9%, 1.4%, and between 0% and 7.2% of these truly immunogenic antigens are produced by PCPS, therefore providing a marginal contribution to the pool of immunogenic tumor antigens. We conclude that spliced peptides will not serve as a comprehensive source to expand the number of targetable antigens for immunotherapies.
Background: Patients that undergo allogeneic stem cell transplantation (SCT) as treatment for hematological diseases face the risk of relapse as well as Graft‐versus‐Host Disease (GvHD). GvHD as well as the favorable Graft‐versus‐Leukemia effect are mediated by donor T cells. These T cells recognize minor histocompatibility antigens: polymorphic peptides, which are presented on the cell surface by HLA molecules and are caused by genetic differences in single nucleotide polymorphisms (SNPs) between patient and donor. Knowledge about mismatched minor histocompatibility antigens may enable a more directed donor search as well as better prediction and measurement of the Graft‐versus‐Leukemia effect and GvHD for personalized treatment after transplantation, thereby contributing to a better outcome for patients treated with allogeneic SCT. Aims: Identification of minor histocompatibility antigens has been a laborious process in the past. Therefore, whole genome association scanning was developed in our laboratory. However, this method was restricted to two HLAs and screening of one million SNPs. The aim of this study is to develop and use an optimized method to identify the dominant repertoire of minor histocompatibility antigens in common HLA class I alleles. Methods: Donor T‐cells isolated from patients after allogeneic SCT are tested for recognition of a new panel of 191 selected B‐cell lines, which are sequenced in the 1000 Genome Project. This panel enables the inclusion of seven common HLAs and increases SNP coverage to 12 million (MAF > 0.01). SNPs that strongly associate with T‐cell recognition are subsequently validated to encode minor histocompatibility antigens. Results: A total of 19 novel minor histocompatibility antigens have been identified that are presented in seven common HLA class I alleles, showing the potential of this optimized approach. Besides conventional antigens, cryptic peptides were found as well as peptides restricted to HLAs that were not primarily targeted. Summary/Conclusion: This improved approach for whole genome association scanning has been successfully applied in rapidly discovering new minor histocompatibility antigens. The new method surpasses previous methods in its rapidness and coverage of HLAs and SNPs across the human genome, which additionally allows for identification of cryptic peptides. With the increasing number of patients that are analyzed in this study, T‐cells recognizing known minor histocompatibility antigens are more often isolated, indicating that the repertoire of minor histocompatibility antigens is limited. Our optimized method is expected to discover the majority of unknown antigens in this repertoire, thereby contributing essential knowledge for new strategies to improve clinical outcome after allogeneic SCT.
Abstract Allogeneic stem cell transplantation (alloSCT) is a curative treatment for hematological malignancies. After HLA-matched alloSCT, antitumor immunity is caused by donor T cells recognizing polymorphic peptides, designated minor histocompatibility antigens (MiHAs), that are presented by HLA on malignant patient cells. However, T cells often target MiHAs on healthy nonhematopoietic tissues of patients, thereby inducing side effects known as graft-versus-host disease. Here, we aimed to identify the dominant repertoire of HLA-I-restricted MiHAs to enable strategies to predict, monitor or modulate immune responses after alloSCT. To systematically identify novel MiHAs by genome-wide association screening, T-cell clones were isolated from 39 transplanted patients and tested for reactivity against 191 Epstein-Barr virus transformed B cell lines of the 1000 Genomes Project. By discovering 81 new MiHAs, we more than doubled the antigen repertoire to 159 MiHAs and demonstrated that, despite many genetic differences between patients and donors, often the same MiHAs are targeted in multiple patients. Furthermore, we showed that one quarter of the antigens are cryptic, that is translated from unconventional open reading frames, for example long noncoding RNAs, showing that these antigen types are relevant targets in natural immune responses. Finally, using single cell RNA-seq data, we analyzed tissue expression of MiHA-encoding genes to explore their potential role in clinical outcome, and characterized 11 new hematopoietic-restricted MiHAs as potential targets for immunotherapy. In conclusion, we expanded the repertoire of HLA-I-restricted MiHAs and identified recurrent, cryptic and hematopoietic-restricted antigens, which are fundamental to predict, follow or manipulate immune responses to improve clinical outcome after alloSCT.
Patients undergoing allogeneic stem cell transplantation as treatment for hematological diseases face the risk of Graft-versus-Host Disease as well as relapse. Graft-versus-Host Disease and the favorable Graft-versus-Leukemia effect are mediated by donor T cells recognizing polymorphic peptides, which are presented on the cell surface by HLA molecules and result from single nucleotide polymorphism alleles that are disparate between patient and donor. Identification of polymorphic HLA-binding peptides, designated minor histocompatibility antigens, has been a laborious procedure, and the number and scope for broad clinical use of these antigens therefore remain limited. Here, we present an optimized whole genome association approach for discovery of HLA class I minor histocompatibility antigens. T cell clones isolated from patients who responded to donor lymphocyte infusions after HLA-matched allogeneic stem cell transplantation were tested against a panel of 191 EBV-transformed B cells, which have been sequenced by the 1000 Genomes Project and selected for expression of seven common HLA class I alleles (HLA-A*01:01, A*02:01, A*03:01, B*07:02, B*08:01, C*07:01 and C*07:02). By including all polymorphisms with minor allele frequencies above 0.01, we demonstrated that the new approach allows direct discovery of minor histocompatibility antigens as exemplified by six new antigens in six different common HLA class I alleles. The panel is also applicable to eight other HLAs for SNPs with optimal allele frequencies, as shown for a new antigen identified in HLA-A*24:02, which is also presented by HLA-A*23:01. Our optimized whole genome association strategy is expected to rapidly augment the repertoire of HLA class I-restricted minor histocompatibility antigens that will become available for donor selection and clinical use to predict, follow or manipulate Graft-versus-Leukemia effect and Graft-versus-Host Disease after allogeneic stem cell transplantation.
Key Points We describe a novel allo-tumor–reactive and CD8α-dependent Vγ5Vδ1TCR. The molecular interface with proximity to the peptide-binding groove of HLA-A*24:02 is an essential determinant of recognition.