Abstract Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training‐induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short‐term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2‐week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short‐term plasticity of auditory evoked fields and auditory skills were examined in a pre‐post design, adapted to the individual neuro‐auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long‐term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3–4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing.
Attention deficit (hyperactivity) disorder (AD(H)D) is one of the most common neurodevelopmental disorders in children with up to 60% probability of prevailing into adulthood. AD(H)D has far-fetching negative impacts on various areas of life. Until today, no observer-independent diagnostic biomarker is available for AD(H)D, however recent research found evidence that AD(H)D is reflected in auditory dysfunctions. Furthermore, the official diagnostic classification systems, being mainly the ICD-10 in Europe and the DSM-5 in the United States, are not entirely consistent. The neuro-auditory profiles of 82 adults (27 ADHD, 30 ADD, 25 controls) were measured via structural magnetic resonance imaging (MRI) and magnetoencephalography (MEG) to determine gray matter volumes and activity of auditory subareas [Heschl's gyrus (HG) and planum temporale (PT)]. All three groups (ADHD, ADD, and controls) revealed distinct neuro-auditory profiles. In the left hemisphere, both ADHD and ADD showed reduced gray matter volumes of the left HG, resulting in diminished left HG/PT ratios. In the right hemisphere, subjects with ADHD were characterized by lower right HG/PT ratios and ADD by a similar right HG/PT ratio compared to controls. Controls and ADD had well-balanced hemispheric response patterns, ADHD a left-right asynchrony. With this study, we present the structural and functional differences in the auditory cortex of adult patients with AD(H)D.
Research has shown that dyslexia and attention deficit (hyperactivity) disorder (AD(H)D) are characterized by specific neuroanatomical and neurofunctional differences in the auditory cortex. These neurofunctional characteristics in children with ADHD, ADD and dyslexia are linked to distinct differences in music perception. Group-specific differences in the musical performance of patients with ADHD, ADD and dyslexia have not been investigated in detail so far. We investigated the musical performance and neurophysiological correlates of 21 adolescents with dyslexia, 19 with ADHD, 28 with ADD and 28 age-matched, unaffected controls using a music performance assessment scale and magnetoencephalography (MEG). Musical experts independently assessed pitch and rhythmic accuracy, intonation, improvisation skills and musical expression. Compared to dyslexic adolescents, controls as well as adolescents with ADHD and ADD performed better in rhythmic reproduction, rhythmic improvisation and musical expression. Controls were significantly better in rhythmic reproduction than adolescents with ADD and scored higher in rhythmic and pitch improvisation than adolescents with ADHD. Adolescents with ADD and controls scored better in pitch reproduction than dyslexic adolescents. In pitch improvisation, the ADD group performed better than the ADHD group, and controls scored better than dyslexic adolescents. Discriminant analysis revealed that rhythmic improvisation and musical expression discriminate the dyslexic group from controls and adolescents with ADHD and ADD. A second discriminant analysis based on MEG variables showed that absolute P1 latency asynchrony |R-L| distinguishes the control group from the disorder groups best, while P1 and N1 latencies averaged across hemispheres separate the control, ADD and ADHD groups from the dyslexic group. Furthermore, rhythmic improvisation was negatively correlated with auditory-evoked P1 and N1 latencies, pointing in the following direction: the earlier the P1 and N1 latencies (mean), the better the rhythmic improvisation. These findings provide novel insight into the differences between music processing and performance in adolescents with and without neurodevelopmental disorders. A better understanding of these differences may help to develop tailored preventions or therapeutic interventions.
In previous research, we detected that children and adolescents who were diagnosed with ADHD showed deficits in both complex auditory processing of musical stimuli and in musical performance when compared to controls. In this study, we were interested in whether we could detect similar or distinct findings when we use foreign speech perception tasks. Therefore, we recruited musically naïve participants (n = 25), music-educated participants (n = 25) and participants diagnosed with ADHD (n = 25) who were assessed for their short-term memory (STM) capacity and the ability to discriminate music and speech stimuli and we collected self-ratings of the participants' music and language performances. As expected, we found that young adults with ADHD show deficits in the perception of complex music and difficult speech perception stimuli. We also found that STM capacity was not impaired in young adults with ADHD and may not persist into young adulthood. In addition, subjective self-estimation about the participants' language and music performances revealed that the ADHD group overestimated their performance competence relatively compared to both control groups. As a result, the findings of our study suggest that individuals diagnosed with ADHD require a special training program that not only focuses on improving performance in perceptual skills of music and language but also requires metacognitive training to develop realistic self-assessment skills.
Previous research suggests that musical ability is associated with language processing and foreign language pronunciation. Whether musical ability is associated with the ability to generate intelligible unfamiliar utterances has not been investigated. Furthermore, how unfamiliar languages are perceived has rarely been related to musical ability. We tested 80 healthy adults, with a mean age of 34.05 and a combination of 41 women and 39 men. We used batteries of perceptual and generational music and language measures to assess foreign language intelligibility and musical capacity. Regression analysis revealed that five measures explained the variance in the intelligibility of unfamiliar foreign utterances. These were short-term memory capacity, melodic singing ability, speech perception ability, and how melodic and memorable the utterances sounded to the participants. Correlational analyses revealed that musical aptitude measures are related to melodic perception and how memorable unfamiliar utterances sound, whereas singing aptitude is related to the perceived difficulty level of the language material. These findings provide novel evidence of the link between musical and speech abilities. In particular, intelligibility measures are associated with singing aptitude and how melodic languages appear to be. As impressions on how foreign languages are perceived are also related to musical capacities, perceptual language parameters address a new perspective that facilitates the understanding of the link between music and language in general.
Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147) using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms) of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only a clear discrimination between two subtypes of attentional disorders (ADHD and ADD), a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.
Research on singing and language abilities has gained considerable interest in the past decade. While several studies about singing ability and language capacity have been published, investigations on individual differences in singing behavior during childhood and its relationship to language capacity in adulthood have largely been neglected. We wanted to focus our study on whether individuals who had sung more often during childhood than their peers were also better in language and music capacity during adulthood. We used questionnaires to assess singing behavior of adults during childhood and tested them for their singing ability, their music perception skills, and their ability to perceive and pronounce unfamiliar languages. The results have revealed that the more often individuals had sung during childhood, the better their singing ability and language pronunciation skills were, while the amount of childhood singing was less predictive on music and language perception skills. We suggest that the amount of singing during childhood seems to influence the ability to sing and the ability to acquire foreign language pronunciation later in adulthood.
Research has shown that melody not only plays a crucial role in music but also in language acquisition processes. Evidence has been provided that melody helps in retrieving, remembering, and memorizing new language material, while relatively little is known about whether individuals who perceive speech as more melodic than others also benefit in the acquisition of oral languages. In this investigation, we wanted to show which impact the subjective melodic perception of speech has on the pronunciation of unfamiliar foreign languages. We tested 86 participants for how melodic they perceived five unfamiliar languages, for their ability to repeat and pronounce the respective five languages, for their musical abilities, and for their short-term memory (STM). The results revealed that 59 percent of the variance in the language pronunciation tasks could be explained by five predictors: the number of foreign languages spoken, short-term memory capacity, tonal aptitude, melodic singing ability, and how melodic the languages appeared to the participants. Group comparisons showed that individuals who perceived languages as more melodic performed significantly better in all language tasks than those who did not. However, even though we expected musical measures to be related to the melodic perception of foreign languages, we could only detect some correlations to rhythmical and tonal musical aptitude. Overall, the findings of this investigation add a new dimension to language research, which shows that individuals who perceive natural languages to be more melodic than others also retrieve and pronounce utterances more accurately.
Learning Mandarin has become increasingly important in the Western world but is rather difficult to be learnt by speakers of non-tone languages. Since tone language learning requires very precise tonal ability, we set out to test whether musical skills, musical status, singing ability, singing behavior during childhood, basic auditory skills, and short-term memory ability contribute to individual differences in Mandarin performance. Therefore, we developed Mandarin tone discrimination and pronunciation tasks to assess individual differences in adult participants’ ( N = 109) tone language ability. Results revealed that short-term memory capacity, singing ability, pitch perception preferences, and tone frequency (high vs. low tones) were the most important predictors, which explained individual differences in the Mandarin performances of our participants. Therefore, it can be concluded that training of basic auditory skills, musical training including singing should be integrated in the educational setting for speakers of non-tone languages who learn tone languages such as Mandarin.
This study examined how second language (L2) speakers’ individual differences in music perception abilities, singing abilities and phonetic aptitude relate to their L2 phonological awareness. To measure participants’ L2 phonological awareness, we used an accent faking paradigm, where participants were asked to speak in their native language (German) while imitating a strong L2 accent (English). We measured their musical abilities with the AMMA test and their singing abilities with two singing tasks and a self-report questionnaire. Their phonetic aptitude was assessed with a combination of phonological short-term memory tasks (forward and backward digit span tasks), and language perception and production tasks, in which participants needed to process and imitate sounds from unfamiliar languages. A regression analysis revealed that singing abilities and phonetic aptitude could predict participants’ English faking abilities. This suggests that being able to sing could help learners produce and memorise highly accurate L2 sounds, although their performance could also partly be explained by innate learning capacities such as phonetic aptitude. This study also proposes a new combination of tests to obtain a well-rounded assessment of individual differences in phonetic aptitude.