The selective anti-tumor activity and less toxic nature of hypoxia-activated prodrugs including tirapazamine (TPZ) are harbored by hypoxia levels in tumors, the inadequacy of which leads to failure in clinical trials. Thus, the development of effective clinical applications of TPZ requires advanced strategies to intensify hypoxia levels in tumors effectively and safely. In this study, we designed and fabricated a paclitaxel (PTX)-loaded dual-response delivery system with a low dose (e.g., 2 Gy) of X-ray and reactive oxygen species on the basis of diselenide block copolymers. Upon the external X-ray stimulus, the system accurately released encapsulated PTX at tumor sites and remarkably improved tumor hypoxia levels by causing severe damage to tumor blood vessels. Subsequently, these enhanced tumor hypoxia levels effectively activated the reduction of TPZ into benzotriazinyl free radicals, which significantly improved the antitumor efficacy of our system against 4T1 breast cancer cells with an initial tumor volume of 500 mm3. Moreover, the dual-stimulus coordinated and controlled release of PTX was found to largely avoid the off-target effects of PTX on normal cells while exhibiting very limited side effects in experimental mice. The current novel strategy for regulating tumor hypoxia levels offers an effective and safe way to activate TPZ for the treatment of large solid tumors.
Abstract The efficacy of nanoparticle (NP)‐based drug delivery technology is hampered by aberrant tumor stromal microenvironments (TSMs) that hinder NP transportation. Therefore, the promotion of NP permeation into deep tumor sites via the regulation of tumor microenvironments is of critical importance. Herein, we propose a potential solution using a dihydralazine (HDZ)‐loaded nanoparticle drug delivery system containing a pH‐responsive, cyclic RGD peptide‐modified prodrug based on doxorubicin (cRGD‐Dex‐DOX). With a combined experimental and theoretical approach, we find that the designed NP system can recognize the acid tumor environments and precisely release the encapsulated HDZ into tumor tissues. HDZ can notably downregulate the expression levels of hypoxia‐inducible factor 1α (HIF1α), α‐smooth muscle actin, and fibronectin through the dilation of tumor blood vessels. These changes in the TSMs enhance the enrichment and penetration of NPs and also unexpectedly promote the infiltration of activated T cells into tumors, suggesting that such a system may offer an effective “multifunctional therapy” through both improving the chemotherapeutic effect and enhancing the immune response to tumors. In vivo experiments on 4T1 breast cancer bearing mice indeed validate that this therapy has the most outstanding antitumor effects over all the other tested control regimens, with the lowest side effects as well.
The efficacy of nanoparticle (NP)-based drug delivery technology is hampered by aberrant tumor stromal microenvironments (TSMs) that hinder NP transportation. Therefore, the promotion of NP permeation into deep tumor sites via the regulation of tumor microenvironments is of critical importance. Herein, we propose a potential solution using a dihydrazidine (HDZ)-loaded nanoparticle drug delivery system containing a pH-responsive, cyclic RGD peptide-modified prodrug based on doxorubicin (cRGD-Dex-DOX). With a combined experimental and theoretical approach, we find that the designed NP system can recognize the acid tumor environments and precisely release the encapsulated HDZ into tumor tissues. HDZ can notably downregulate the expression levels of hypoxia-inducible factor 1α (HIF1α), α-smooth muscle actin, and fibronectin through the dilation of tumor blood vessels. These changes in the TSMs enhance the enrichment and penetration of NPs and also unexpectedly promote the infiltration of activated T cells into tumors, suggesting that such a system may offer an effective “multifunctional therapy” through both improving the chemotherapeutic effect and enhancing the immune response to tumors. In vivo experiments on 4T1 breast cancer bearing mice indeed validate that this therapy has the most outstanding antitumor effects over all the other tested control regimens, with the lowest side effects as well.