Multi-cellular segmentation of bright field microscopy images is an essential computational step when quantifying collective migration of cells in vitro. Despite the availability of various tools and algorithms, no publicly available benchmark has been proposed for evaluation and comparison between the different alternatives. A uniform framework is presented to benchmark algorithms for multi-cellular segmentation in bright field microscopy images. A freely available set of 171 manually segmented images from diverse origins was partitioned into 8 datasets and evaluated on three leading designated tools. The presented benchmark resource for evaluating segmentation algorithms of bright field images is the first public annotated dataset for this purpose. This annotated dataset of diverse examples allows fair evaluations and comparisons of future segmentation methods. Scientists are encouraged to assess new algorithms on this benchmark, and to contribute additional annotated datasets.
We advance an experimental method for the characterization of the geometric site distribution of a fractal structure, which rests on the interrogation of direct, long-range, singlet-singlet, intermolecular, electronic energy transfer. Time-resolved picosecond spectroscopy was utilized to study energy transfer from rhodamine B to malachite green doped into a porous glass, resulting in a fractal dimension of $\overline{d}=1.74\ifmmode\pm\else\textpm\fi{}0.12$ for this irregular structure.
The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations), we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels–the outgoing (incoming) connectivity is successfully predicted for 73% (56%) of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83). Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-value<1e-5). Reassuringly, the genes previously known from the literature to be involved in axon guidance do carry significant information about regional brain connectivity. Surveying the genes known to be associated with the pathogenesis of several brain disorders, we find that those associated with schizophrenia, autism and attention deficit disorder are the most highly enriched in the connectivity-related genes identified here. Finally, we find that the profile of functional annotation groups that are associated with regional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming). Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data.
We consider the problem of learning to map between two vector spaces given pairs of matching vectors, one from each space. This problem naturally arises in numerous vision problems, for example, when mapping between the images of two cameras, or when the annotations of each image is multidimensional. We focus on the common asymmetric case, where one vector space X is more informative than the other Y, and find a transformation from Y to X. We present a new optimization problem that aims to replicate in the transformed Y the margins that dominate the structure of X. This optimization problem is convex, and efficient algorithms are presented. Links to various existing methods such as CCA and SVM are drawn, and the effectiveness of the method is demonstrated in several visual domains.