Heparanase-1 (HPR1), an endoglycosidase that specifically degrades heparan sulfate (HS) proteoglycans, is overexpressed in a variety of malignancies. Our present study sought to determine whether oncogene BRAF and RAS mutations lead to increased HPR1 expression. Reverse transcription-polymerase chain reaction analysis revealed that HPR1 gene expression was increased in HEK293 cells transiently transfected with a mutant BRAF or RAS gene. Flow cytometric analysis revealed that B-Raf activation led to loss of the cell surface HS, which could be blocked by two HPR1 inhibitors: heparin and PI-88. Cotransfection of a BRAF or RAS mutant gene with HPR1 promoter-driven luciferase reporters increased luciferase reporter gene expression in HEK293 cells. Knockdown of BRAF expression in a BRAF-mutated KAT-10 tumor cell line led to the suppression of HPR1 gene expression, subsequently leading to increased cell surface HS levels. Truncational and mutational analyses of the HPR1 promoter revealed that the Ets-relevant elements in the HPR1 promoter were critical for BRAF activation-induced HPR1 expression. Luciferase reporter gene expression driven by a four-copy GA binding protein (GABP) binding site was significantly lower in BRAF siRNA-transfected KAT-10 cells than in the control siRNA-transfected cells. We further showed that BRAF knockdown led to suppression of the expression of the GABPβ, an Ets family transcription factor involved in regulating HPR1 promoter activity. Taken together, our study suggests that B-Raf kinase activation plays an important role in regulating HPR1 expression. Increased HPR1 expression may contribute to the aggressive behavior of BRAF-mutated cancer.
Interferon regulatory factor 3 (IRF3) is a central hub transcription factor that controls host antiviral innate immunity. The expression and function of IRF3 are tightly regulated by the post-translational modifications. However, it is unknown whether unanchored ubiquitination and deubiquitination of IRF3 involve modulating antiviral innate immunity against RNA viruses. Here, we find that USP5, a deubiquitinase (DUB) regulating unanchored polyubiquitin, is downregulated during host anti-RNA viral innate immunity in a type I interferon (IFN-I) receptor (IFNAR)-dependent manner. USP5 is further identified to inhibit IRF3-triggered antiviral immune responses through its DUB enzyme activity. K48-linked unanchored ubiquitin promotes IRF3-driven transcription of IFN-β and induction of IFN-stimulated genes (ISGs) in a dose-dependent manner. USP5 simultaneously removes both K48-linked unanchored and K63-linked anchored polyubiquitin chains on IRF3. Our study not only provides evidence that unanchored ubiquitin regulates anti-RNA viral innate immunity but also proposes a novel mechanism for DUB-controlled IRF3 activation, suggesting that USP5 is a potential target for the treatment of RNA viral infectious diseases.
The role of mesenchymal stem cells (MSCs) on breast cancer progression, growth and tumorigenesis remains controversial or unknown. In the present study, we investigated the role of MSCs on breast tumor induction and growth in a clinically relevant somatic breast cancer model. We first conducted in vitro studies and found that conditioned media (CM) of RCAS-Neu and RCAS-PyMT breast cancer cell lines and tumor cells themselves dramatically increased the proliferation and motility of MSCs and induced morphological changes of MSCs and differentiation into fibroblast-like cells. In contrast, the CM of MSCs inhibited the proliferation of two breast cancer cell lines by arresting the cell cycle at the G0/G1 phase. In vivo studies revealed that fluorescence dye-labeled MSCs migrated into tumor tissues. Unexpectedly, single or multiple intravenous injections of MSCs did not affect the latency of breast cancer in TVA- transgenic mice induced by intraductal injection of the RCAS vector encoding polyoma middle-T antigen (PyMT) or Neu oncogenes. Moreover, MSCs had no effect on RCAS-Neu tumor growth in a syngeneic ectopic breast cancer model. While our studies consistently demonstrated the ability of breast cancer cells to profoundly induce MSCs migration, differentiation, and proliferation, the anti-proliferative effect of MSCs on breast tumor cells observed in vitro could not be translated into an antitumor activity in vivo, probably reflecting the antagonizing or complex effects of MSCs on tumor environment and tumor cells themselves.
H9N2 avian influenza virus (AIV) of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts.
Janus kinase (JAK) inhibitors have been developed as novel immunomodulatory drugs and primarily used for treating rheumatoid arthritis and other inflammatory diseases. Recent studies have suggested that this category of anti-inflammatory drugs could be potentially useful for the control of inflammation “storms” in respiratory virus infections. In addition to their role in regulating immune cell functions, JAK1 and JAK2 have been recently identified as crucial cellular factors involved in influenza A virus (IAV) replication and could be potentially targeted for antiviral therapy. Gingerenone A (Gin A) is a compound derived from ginger roots and a dual inhibitor of JAK2 and p70 S6 kinase (S6K1). Our present study aimed to determine the antiviral activity of Gin A on influenza A virus (IAV) and to understand its mechanisms of action. Here, we reported that Gin A suppressed the replication of three IAV subtypes (H1N1, H5N1, H9N2) in four cell lines. IAV replication was also inhibited by Ruxolitinib (Rux), a JAK inhibitor, but not by PF-4708671, an S6K1 inhibitor. JAK2 overexpression enhanced H5N1 virus replication and attenuated Gin A-mediated antiviral activity. In vivo experiments revealed that Gin A treatment suppressed IAV replication in the lungs of H5N1 virus-infected mice, alleviated their body weight loss, and prolonged their survival. Our study suggests that Gin A restricts IAV replication by inhibiting JAK2 activity; Gin A could be potentially useful for the control of influenza virus infections.
Abstract Many DNA viruses develop various strategies to inhibit cell death to facilitate their replication. However, whether influenza A virus (IAV), a fast-replicating RNA virus, attenuates cell death remains unknown. Here, we report that IAV infection induces TAK1 phosphorylation in a murine alveolar epithelial cell line (LET1) and a murine fibroblastoma cell line (L929). The TAK1-specific inhibitor 5Z-7-Oxzeneonal (5Z) and TAK1 knockout significantly enhance IAV-induced apoptosis, as evidenced by increased PARP, caspase-8, and caspase-3 cleavage. TAK1 inhibition also increases necroptosis as evidenced by increased RIPK1 S166 , RIPK3 T231/S232 , and MLKL S345 phosphorylation. Mechanistically, TAK1 activates IKK, which phosphorylates RIPK1 S25 and inhibits its activation. TAK1 also activates p38 and its downstream kinase MK2, which phosphorylates RIPK1 S321 but does not affect RIPK1 activation. Further investigation revealed that the RIPK1 inhibitor Nec-1 and RIPK1 knockout abrogate IAV-induced apoptosis and necroptosis; re-expression of wild-type but not kinase-dead (KD)-RIPK1 restores IAV-induced cell death. ZBP1 knockout abrogates IAV-induced cell death, whereas RIPK3 knockout inhibits IAV-induced necroptosis but not apoptosis. 5Z treatment enhances IAV-induced cell death and slightly reduces the inflammatory response in the lungs of H1N1 virus-infected mice and prolongs the survival of IAV-infected mice. Our study provides evidence that IAV activates TAK1 to suppress RIPK1-dependent apoptosis and necroptosis, and that RIPK3 is required for IAV-induced necroptosis but not apoptosis in epithelial cells.
Leflunomide is a novel immunomodulatory drug prescribed for treating rheumatoid arthritis.It inhibits the activity of protein tyrosine kinases and dihydroorotate dehydrogenase, a rate-limiting enzyme in the pyrimidine nucleotide synthesis pathway.Here, we report that A77 1726, the active metabolite of leflunomide, inhibited the phosphorylation of ribosomal protein S6 and two other substrates of S6K1, insulin receptor substrate-1 and carbamoyl phosphate synthetase 2, in an A375 melanoma cell line.A77 1726 increased the phosphorylation of AKT, p70 S6 (S6K1), ERK1/2, and MEK through the feedback activation of the IGF-1 receptor-mediated signaling pathway.In vitro kinase assay revealed that leflunomide and A77 1726 inhibited S6K1 activity with IC 50 values of approximately 55 and 80 μM, respectively.Exogenous uridine partially blocked A77 1726-induced inhibition of A375 cell proliferation.S6K1 knockdown led to the inhibition of A375 cell proliferation but did not potentiate the antiproliferative effect of A77 1726.A77 1726 stimulated bromodeoxyuridine incorporation in A375 cells but arrested the cell cycle in the S phase, which was reversed by addition of exogenous uridine or by MAP kinase pathway inhibitors but not by rapamycin and LY294002 (a phosphoinositide 3-kinase inhibitor).These observations suggest that A77 1726 accelerates cell cycle entry into the S phase through MAP kinase activation and that pyrimidine nucleotide depletion halts the completion of the cell cycle.Our study identified a novel molecular target of A77 1726 and showed that the inhibition of S6K1 activity was in part responsible for its antiproliferative activity.Our study also provides a novel mechanistic insight into A77 1726-induced cell cycle arrest in the S phase.
Abstract Autophagy is a highly conserved cellular process that profoundly impacts the efficacy of genotoxic chemotherapeutic drugs. TGF‐β‐activated kinase 1 (TAK1) is a serine/threonine kinase that activates several signaling pathways involved in inducing autophagy and suppressing cell death. Xanthine oxidoreductase (XOR) is a rate‐limiting enzyme that converts hypoxanthine to xanthine, and xanthine to uric acid and hydrogen peroxide in the purine catabolism pathway. Recent studies showed that uric acid can bind to TAK1 and prolong its activation. We hypothesized that genotoxic drugs may induce autophagy and apoptosis resistance by activating TAK1 through XOR‐generated uric acid. Here, we report that gemcitabine and 5‐fluorouracil (5‐FU), two genotoxic drugs, induced autophagy in HeLa and HT‐29 cells by activating TAK1 and its two downstream kinases, AMP‐activated kinase (AMPK) and c‐Jun terminal kinase (JNK). XOR knockdown and the XOR inhibitor allopurinol blocked gemcitabine‐induced TAK1, JNK, AMPK, and Unc51‐like kinase 1 (ULK1) S555 phosphorylation and gemcitabine‐induced autophagy. Inhibition of the ATM‐Chk pathway, which inhibits genotoxic drug‐induced uric acid production, blocked gemcitabine‐induced autophagy by inhibiting TAK1 activation. Exogenous uric acid in its salt form, monosodium urate (MSU), induced autophagy by activating TAK1 and its downstream kinases JNK and AMPK. Gene knockdown or the inhibitors of these kinases blocked gemcitabine‐ and MSU‐induced autophagy. Inhibition of autophagy by allopurinol, chloroquine, and 5Z‐7‐oxozeaenol (5Z), a TAK1‐specific inhibitor, enhanced gemcitabine‐induced apoptosis. Our study uncovers a previously unrecognized role of XOR in regulating genotoxic drug‐induced autophagy and apoptosis and has implications for designing novel therapeutic strategies for cancer treatment.