To characterize the neuropathologic features of neuromyelitis optica (NMO) at the medullary floor of the fourth ventricle and area postrema. Aquaporin-4 (AQP4) autoimmunity targets this region, resulting in intractable nausea associated with vomiting or hiccups in NMO.This neuropathologic study was performed on archival brainstem tissue from 15 patients with NMO, 5 patients with multiple sclerosis (MS), and 8 neurologically normal subjects. Logistic regression was used to evaluate whether the presence of lesions at this level increased the odds of a patient with NMO having an episode of nausea/vomiting.Six patients with NMO (40%), but no patients with MS or normal controls, exhibited unilateral or bilateral lesions involving the area postrema and the medullary floor of the fourth ventricle. These lesions were characterized by tissue rarefaction, blood vessel thickening, no obvious neuronal or axonal pathology, and preservation of myelin in the subependymal medullary tegmentum. AQP4 immunoreactivity was lost or markedly reduced in all 6 cases, with moderate to marked perivascular and parenchymal lymphocytic inflammatory infiltrates, prominent microglial activation, and in 3 cases, eosinophils. Complement deposition in astrocytes, macrophages, and/or perivascularly, and a prominent astroglial reaction were also present. The odds of nausea/vomiting being documented clinically was 16-fold greater in NMO cases with area postrema lesions (95% confidence interval 1.43-437, p = 0.02).These neuropathologic findings suggest the area postrema may be a selective target of the disease process in NMO, and are compatible with clinical reports of nausea and vomiting preceding episodes of optic neuritis and transverse myelitis or being the heralding symptom of NMO.
The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, β, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study.
Abstract Alzheimer’s disease (AD) is a looming public health disaster with limited interventions. Alzheimer’s is a complex disease that can present with or without causative mutations and can be accompanied by a range of age-related comorbidities. This diverse presentation makes it difficult to study molecular changes specific to AD. To better understand the molecular signatures of disease we constructed a unique human brain sample cohort inclusive of autosomal dominant AD dementia (ADD), sporadic ADD, and those without dementia but with high AD histopathologic burden, and cognitively normal individuals with no/minimal AD histopathologic burden. All samples are clinically well characterized, and brain tissue was preserved postmortem by rapid autopsy. Samples from four brain regions were processed and analyzed by data-independent acquisition LC-MS/MS. Here we present a high-quality quantitative dataset at the peptide and protein level for each brain region. Multiple internal and external control strategies were included in this experiment to ensure data quality. All data are deposited in the ProteomeXchange repositories and available from each step of our processing.
Alzheimer disease (AD) and chronic traumatic encephalopathy (CTE) involve the abnormal accumulation in the brain of filaments composed of both three-repeat (3R) and four-repeat (4R) (3R/4R) tau isoforms. To probe the molecular basis for AD's tau filament propagation and to improve detection of tau aggregates as potential biomarkers, we have exploited the seeded polymerization growth mechanism of tau filaments to develop a highly selective and ultrasensitive cell-free tau seed amplification assay optimized for AD (AD real-time quaking-induced conversion or AD RT-QuIC). The reaction is based on the ability of AD tau aggregates to seed the formation of amyloid fibrils made of certain recombinant tau fragments. AD RT-QuIC detected seeding activity in AD (n = 16) brains at dilutions as extreme as 10
Background: Pathologic changes in the Alzheimer disease (AD) brain occur in a hierarchical neuroanatomical pattern affecting cortical, subcortical, and limbic regions. Objective: To define the time course of pathologic and biochemical changes—amyloid deposition, amyloid β-peptide (Aβ) accumulation, neurofibrillary tangle (NFT) formation, synaptic loss, and gliosis—within the temporal association cortex of AD cases of varying disease duration, relative to control brains. Methods: Stereologic assessments of amyloid burden and tangle density as well as ELISA-based measurements of Aβ, synaptophysin, and glial fibrillary acidic protein (GFAP) were performed in the superior temporal sulcus from a cohort of 83 AD and 26 nondemented control brains. Results: Relative to control cases, AD brains were characterized by accumulation of NFT and amyloid plaques, increase of tris- and formic acid–extractable Aβ species, reduced levels of synaptophysin, and elevated levels of GFAP. In AD cases, the duration of dementia correlated with the degree of tangle formation, gliosis, and synaptic loss but not with any Aβ measures. Accumulation of Aβ, measured both neuropathologically and biochemically, was markedly increased in AD brains independent of disease duration, even in cases of short duration. Conclusions: These data support distinct processes in the initiation and progression of AD pathology within the temporal cortex: Deposition of Aβ reaches a “ceiling” early in the disease process, whereas NFT formation, synaptic loss, and gliosis continue throughout the course of the illness.
Lewy bodies, protein aggregations classically associated with Parkinson disease (PD) substantia nigra neurons, are not limited to the brainstem.1 Over time, pathologists developed terms such …
Abstract Amino acid isomerization is a spontaneous chemical modification potentially related to the underlying causes of Alzheimer’s disease (AD). We demonstrate that data-independent acquisition mass spectrometry can be used to characterize isomerization in complex protein mixtures. Examination of a large cohort of brain tissue samples revealed a striking relationship between isomerization of tau and AD status. Surprisingly, isomerization was found to be more abundant in both autosomal dominant and sporadic AD samples relative to controls. We hypothesize that lower autophagic flux in AD brains accounts for these results. Additional data, including quantitative analysis of proteins related to autophagy, strongly support this hypothesis. For example, isomerization of tau is positively correlated with levels of p62, a recognized indicator of autophagic inhibition. In sum, the data suggest strong ties between isomerization and autophagic flux, which may therefore represent a promising target for future investigations into the therapy and prevention of AD.
Abstract Background Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results Our analysis of common SNVs and indels confirmed known genetic loci at MAPT , MOBP , S TX6 , SLCO1A2 , DUSP10 , and SP1 , and further uncovered novel signals in APOE , FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1 . Notably, in contrast to Alzheimer’s disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH , PCMT1 , CYP2A13 , and SMCP . In the H1/H2 haplotype region, there is a burden of rare deletions and duplications ( P = 6.73 × 10 –3 ) in PSP. Conclusions Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.