By direct imaging we determine spin structure changes in Permalloy wires and disks due to spin transfer torque as well as the critical current densities for different domain wall types. Periodic domain wall transformations from transverse to vortex walls and vice versa are observed, and the transformation mechanism occurs by vortex core displacement perpendicular to the wire. The results imply that the nonadiabaticity parameter beta does not equal the damping alpha, in agreement with recent theoretical predictions. The vortex core motion perpendicular to the current is further studied in disks revealing that the displacement in opposite directions can be attributed to different polarities of the vortex core.
We investigated the magnetoresistance of Permalloy (Ni80Fe20) films with thicknesses ranging from a single monolayer to 12 nm, grown on Al2O3, MgO and SiO2 substrates. Growth and transport measurements were carried out at 80 K in UHV. Applying in-plane magnetic vector fields up to 100 mT, the magnetotransport properties were ascertained during growth. With increasing thickness the films exhibited a gradual transition from tunnelling magnetoresistance to anisotropic magnetoresistance. This corresponds to the evolution of the film structure from separated small islands to a network of interconnected grains, as well as the film's transition from superparamagnetic to ferromagnetic behaviour. Using an analysis based on a theoretical model of island growth, we found that the observed evolution of the magnetoresistance in the tunnelling regime originated from changes in the island size distribution during growth. Depending on the substrate material, significant differences in the magnetoresistance response in the transition regime between tunnelling magnetoresistance and anisotropic magnetoresistance were found. We attributed this to an increasingly pronounced island growth, and to a slower percolation process of Permalloy when comparing growth on SiO2, MgO and Al2O3 substrates. The different growth characteristics resulted in a markedly earlier onset of both tunnelling magnetoresistance and anisotropic magnetoresistance for SiO2. For Al2O3 in particular the growth mode results in a structure of the film containing two different contributions to ferromagnetism, which lead to two distinct coercive fields in the high thickness regime.
We study the evolution of the magnetoresistance (MR) in Permalloy nanocontacts prepared by controlled low-temperature UHV electromigration in nanoring segment structures with constrictions. The ring geometry allows for the controlled and reproducible positioning of a domain wall in the nanocontacts. We observe three different resistance levels, corresponding to distinct domain-wall positions. A change in the sign of the MR difference, between a domain wall at the constriction and a domain wall next to the constriction, occurs with decreasing constriction width. This is in line with our micromagnetic simulations, where the MR is calculated based on the anisotropic MR (AMR) effect.
In a combined theoretical and experimental study, we investigate the critical current densities for vortex domain walls in magnetic nanowires. We systematically determine the critical current densities for continuous motion of vortex walls as a function of the wire width for different wire thicknesses and we find that the critical current density increases monotonously with decreasing wire width. Theoretically we present a mechanism that predicts a threshold current density based on wall transformations and this leads to a scaling of the critical current density ${j}_{c}\ensuremath{\propto}1/\text{width}$. The origin of this scaling is found to be the different dependence of the spin torque energy and the vortex nucleation energy on the wire width and good agreement with the experimental observations is found.
In this paper, we report on domain wall (DW) motion induced by current pulses at variable temperature in 900 nm wide and 25 nm thick Ni 80 Fe 20 wires with low pinning fields. By using Ar ion milling to pattern our wires rather than the conventional lift-off technique, a depinning field as low as ∼2–3 Oe at room temperature is obtained. Comparison with previous results acquired on similar wires with much higher pinning shows that the critical current density scales with the depinning field, leading to a critical current density of ∼2.5 × 10 11 A m −2 at 250 K. Moreover, when a current pulse with a current density larger than the critical current density is injected, the DW is not necessarily depinned but it can undergo a modification of its spin structure which hinders current-induced DW motion. Hence, reliable propagation of the DW requires an accurate adjustment of the pulsed current density.
Using transmission electron microscopy, we investigate the thermally activated motion of domain walls (DWs) between two positions in Permalloy (Ni80Fe20) nanowires at room temperature. We show that this purely thermal motion is well described by an Arrhenius law, allowing for a description of the DW as a quasiparticle in a one-dimensional potential landscape. By injecting small currents, the potential is modified, allowing for the determination of the nonadiabatic spin torque: βt=0.010±0.004 for a transverse DW and βv=0.073±0.026 for a vortex DW. The larger value is attributed to the higher magnetization gradients present.
Using low temperature magnetoresistance measurements, the possibility to selectively move a domain wall locally by applying current pulses through a Au nanowire adjacent to a permalloy element is studied. We find that the domain wall depinning field is drastically modified with increasing current density due to the Joule heating and the Oersted field of the current, and controlled motion due to the Oersted field without any externally applied fields is achieved. By placing the domain wall at various distances from the Au wire, we determine the range of the Joule heating and the Oersted field and both effects can be separated.
Details are presented of a single shot focused magneto-optic Kerr effect (MOKE) magnetometer which is used to capture the movement of single domain walls (DWs) in permalloy (Ni 80 Fe 20 ) nanowires ( 400 nm width and 20 nm thickness) in real time.By probing the DW motion within the 1 µm diameter laser spot of the instrument, DW velocity and pinning field distributions were obtained.An external field was ramped up linearly, and depinning of a DW from the same start position was observed at three different fields, indicating the stochastic nature of the DW motion.
Magnetic domain walls are found to exhibit quasiparticle behavior when subjected to geometrical variations. Because of the spin torque effect such a quasiparticle in a potential well is excited by an ac current leading to a dip in the depinning field at resonance for current densities as low as 2 x 10(10) A/m2. Independently the resonance frequencies of transverse walls and vortex walls are determined from the dc voltage that develops due to a rectifying effect of the resonant domain wall oscillation. The dependence on the injected current density reveals a strongly nonharmonic oscillation.