Platelets are blood cells that play an integral role in hemostasis and the innate immune response. Platelet hyper- and hypoactivity have been implicated in metabolic disorders, increasing risk for both thrombosis and bleeding. Platelet activation and metabolism are tightly linked, with the numerous methods to measure the former but relatively few for the latter. To study platelet metabolism without the interference of other blood cells and plasma components, platelets must be isolated, a process that is not trivial because of platelets shear sensitivity and ability to irreversibly activate. Presented here is a protocol for platelet isolation (washing) that produces quiescent platelets that are sensitive to stimulation by platelet agonists. Successive centrifugation steps are used with the addition of platelet inhibitors to isolate platelets from whole blood and resuspend them in a controlled, isosmotic buffer. This method reproducibly produces 30%–40% recovery of platelets from whole blood with low activation as measured by markers of granule secretion and integrin activity. Platelet count and fuel concentration can be precisely controlled to allow the user to probe a variety of metabolic situations.
Economical production of photosynthetic organisms requires the use of natural day/night cycles. These induce strong circadian rhythms that lead to transient changes in the cells, requiring complex modeling to capture. In this study, we coupled times series transcriptomic data from the model green alga Chlamydomonas reinhardtii to a metabolic model of the same organism in order to develop the first transient metabolic model for diurnal growth of algae capable of predicting phenotype from genotype. We first transformed a set of discrete transcriptomic measurements (D. Strenkert, S. Schmollinger, S. D. Gallaher, P. A. Salomé, et al., Proc Natl Acad Sci U S A 116:2374-2383, 2019, https://doi.org/10.1073/pnas.1815238116) into continuous curves, producing a complete database of the cell's transcriptome that can be interrogated at any time point. We also decoupled the standard biomass formation equation to allow different components of biomass to be synthesized at different times of the day. The resulting model was able to predict qualitative phenotypical outcomes of a starchless mutant. We also extended this approach to simulate all single-knockout mutants and identified potential targets for rational engineering efforts to increase productivity. This model enables us to evaluate the impact of genetic and environmental changes on the growth, biomass composition, and intracellular fluxes for diurnal growth. IMPORTANCE We have developed the first transient metabolic model for diurnal growth of algae based on experimental data and capable of predicting phenotype from genotype. This model enables us to evaluate the impact of genetic and environmental changes on the growth, biomass composition and intracellular fluxes of the model green alga, Chlamydomonas reinhardtii. The availability of this model will enable faster and more efficient design of cells for production of fuels, chemicals, and pharmaceuticals.
The open ocean is an extremely competitive environment, partially due to the dearth of nutrients. Trichodesmium erythraeum, a marine diazotrophic cyanobacterium, is a keystone species in the ocean due to its ability to fix nitrogen and leak 30 to 50% into the surrounding environment, providing a valuable source of a necessary macronutrient to other species. While there are other diazotrophic cyanobacteria that play an important role in the marine nitrogen cycle, Trichodesmium is unique in its ability to fix both carbon and nitrogen simultaneously during the day without the use of specialized cells called heterocysts to protect nitrogenase from oxygen. Here, we use the advanced modeling framework called multiscale multiobjective systems analysis (MiMoSA) to investigate how Trichodesmium erythraeum can reduce dimolecular nitrogen to ammonium in the presence of oxygen. Our simulations indicate that nitrogenase inhibition is best modeled as Michealis-Menten competitive inhibition and that cells along the filament maintain microaerobia using high flux through Mehler reactions in order to protect nitrogenase from oxygen. We also examined the effect of location on metabolic flux and found that cells at the end of filaments operate in distinctly different metabolic modes than internal cells despite both operating in a photoautotrophic mode. These results give us important insight into how this species is able to operate photosynthesis and nitrogen fixation simultaneously, giving it a distinct advantage over other diazotrophic cyanobacteria because they can harvest light directly to fuel the energy demand of nitrogen fixation. IMPORTANCE Trichodesmium erythraeum is a marine cyanobacterium responsible for approximately half of all biologically fixed nitrogen, making it an integral part of the global nitrogen cycle. Interestingly, unlike other nitrogen-fixing cyanobacteria, Trichodesmium does not use temporal or spatial separation to protect nitrogenase from oxygen poisoning; instead, it operates photosynthesis and nitrogen fixation reactions simultaneously during the day. Unfortunately, the exact mechanism the cells utilize to operate carbon and nitrogen fixation simultaneously is unknown. Here, we use an advanced metabolic modeling framework to investigate and identify the most likely mechanisms Trichodesmium uses to protect nitrogenase from oxygen. The model predicts that cells operate in a microaerobic mode, using both respiratory and Mehler reactions to dramatically reduce intracellular oxygen concentrations.
Photosynthetic organisms convert atmospheric carbon dioxide into numerous metabolites along the pathways to make new biomass. Aquatic photosynthetic organisms, which fix almost half of global inorganic carbon, have great potential: as a carbon dioxide fixation method, for the economical production of chemicals, or as a source for lipids and starch which can then be converted to biofuels. To harness this potential through metabolic engineering and to maximize production, a more thorough understanding of photosynthetic metabolism must first be achieved. A model algal species, C. reinhardtii, was chosen and the metabolic network reconstructed. Intracellular fluxes were then calculated using flux balance analysis (FBA).The metabolic network of primary metabolism for a green alga, C. reinhardtii, was reconstructed using genomic and biochemical information. The reconstructed network accounts for the intracellular localization of enzymes to three compartments and includes 484 metabolic reactions and 458 intracellular metabolites. Based on BLAST searches, one newly annotated enzyme (fructose-1,6-bisphosphatase) was added to the Chlamydomonas reinhardtii database. FBA was used to predict metabolic fluxes under three growth conditions, autotrophic, heterotrophic and mixotrophic growth. Biomass yields ranged from 28.9 g per mole C for autotrophic growth to 15 g per mole C for heterotrophic growth.The flux balance analysis model of central and intermediary metabolism in C. reinhardtii is the first such model for algae and the first model to include three metabolically active compartments. In addition to providing estimates of intracellular fluxes, metabolic reconstruction and modelling efforts also provide a comprehensive method for annotation of genome databases. As a result of our reconstruction, one new enzyme was annotated in the database and several others were found to be missing; implying new pathways or non-conserved enzymes. The use of FBA to estimate intracellular fluxes also provides flux values that can be used as a starting point for rational engineering of C. reinhardtii. From these initial estimates, it is clear that aerobic heterotrophic growth on acetate has a low yield on carbon, while mixotrophically and autotrophically grown cells are significantly more carbon efficient.
Abstract Algae have the potential to be sources of renewable fuels and chemicals. One particular strain, Chromochloris zofingiensis , is of interest due to the co-production of triacylglycerols (TAGs) and astaxanthin, a valuable nutraceutical. To aid in future engineering efforts, we have developed the first genome-scale metabolic model on C. zofingiensis , iChr1915. This model includes 1915 genes, 3413 metabolic reactions and 2652 metabolites. We performed detailed biomass composition analysis for three growth conditions: autotrophic, mixotrophic and heterotrophic and used this data to develop biomass formation equations for each growth condition. The completed model was then used to predict flux distributions for each growth condition; interestingly, for heterotrophic growth, the model predicts the excretion of fermentation products due to overflow metabolism. We confirmed this experimentally via metabolomics of spent medium and fermentation product assays. An in silico gene essentiality analysis was performed on this model, as well as a flux variability analysis to test the production capabilities of this organism. In this work, we present the first genome scale metabolic model of C. zofingiensis and demonstrate its use predicting metabolic activity in different growth conditions, setting up a foundation for future metabolic engineering studies in this organism.
Genome scale metabolic reconstruction for T. erythraeum. This file contains the full SBML formatted genome scale reconstruction of Trichodesmium erythraeum (iTery101) described by this study without constraints. (XML 1720 kb)
A method to flocculate algal cultures of Chlamydomonas reinhardtii using four different industrially produced polymers is presented. Starting with a 1 wt% stock polymer solution, flocculation times less than 60 min were observed for 0.1 to 0.6 g polymer per L of algae culture, while control samples took greater than 1400 min to flocculate. Cell counts showed that 99% of the cells were flocculated using the polymers compared to 73% for the control. Finally, the flocculation process was successful at both 5 and 40 mL batch sizes for one polymer; therefore, the method is efficient, effective and may be scalable.